最直观的卷积动画教程:从零理解深度学习中的卷积计算
你是否还在为深度学习中的卷积计算(Convolution)感到困惑?为什么同样的输入经过不同参数的卷积层后输出尺寸会变化?填充(Padding)和步长(Stride)到底如何影响特征图大小?本文将通过项目提供的15个动态演示动画,带你直观掌握卷积算术的核心原理,读完你将能够:
- 理解卷积操作中输入输出尺寸的计算规律
- 掌握填充、步长、膨胀等参数的作用机制
- 区分普通卷积与转置卷积的视觉差异
- 使用项目工具生成自己的卷积动画
卷积基础:从静态计算到动态过程
卷积是深度学习(Deep Learning)中处理网格数据的核心操作,广泛应用于图像识别、语音处理等领域。与全连接层不同,卷积层通过滑动窗口(Kernel/Filter,内核/滤波器)在输入数据上移动,计算局部区域的加权和,从而提取局部特征。
项目的核心价值在于将抽象的数学公式转化为直观的动态演示。通过 conv_arithmetic.tex 定义的动画生成规则,我们可以清晰看到蓝色输入特征图如何通过卷积操作生成青色输出特征图。
卷积四要素
卷积操作的输出尺寸由四个关键参数决定:
- 输入尺寸(i):输入特征图的大小(如5×5)
- ** kernel尺寸(k)**:卷积核的大小(如3×3)
- 填充(p):输入边缘填充的零值层数(如1)
- 步长(s):卷积核每次移动的步幅(如2)
它们遵循以下计算公式:
输出尺寸 o = ⌊(i - k + 2p) / s⌋ + 1
普通卷积动画解析
无填充无步长卷积
最基础的卷积配置是无填充(p=0) 和单位步长(s=1),此时输出尺寸直接缩减:
o = i - k + 1
如图所示,3×3的卷积核在4×4输入上滑动,生成2×2的输出特征图。每个输出值都是卷积核与对应输入区域的乘积之和。
填充策略对比
为解决边缘信息丢失问题,卷积操作引入填充机制。项目提供了三种典型填充方案的动画演示:
半填充(Same Padding):当p = (k-1)/2时,输出尺寸与输入相同:
o = i
全填充(Full Padding):当p = k-1时,输出尺寸达到最大:
o = i + k - 1
任意填充:可自定义填充层数,如2层填充使5×5输入变为9×9:

步长对输出的影响
步长大于1时会对特征图进行降采样。下图对比了不同步长配置的效果:
转置卷积:从压缩到扩张
转置卷积(Transposed Convolution),也称为分数步长卷积,是实现上采样的关键操作,广泛用于生成式模型(如GAN)和语义分割。它与普通卷积的过程相反,通过在输入元素间插入零值实现尺寸扩张。
转置卷积与普通卷积的关系
| 普通卷积 | 转置卷积 |
|---|---|
| 降采样(下采样) | 升采样(上采样) |
| 参数:(k,p,s) | 参数:(k,p,s) |
| 输出尺寸减小 | 输出尺寸增大 |
| 用于特征提取 | 用于特征重建 |
转置卷积动画演示
膨胀卷积:扩大感受野的魔法
膨胀卷积(Dilated Convolution)通过在卷积核元素间插入空格(空洞),在不增加参数的情况下扩大感受野,特别适用于语义分割等需要长距离上下文信息的任务。
膨胀率(dilation rate)为2的3×3卷积核,实际感受野相当于5×5,但参数数量仍保持9个。计算公式为:
有效kernel尺寸 = k + (k-1)(d-1)
其中d为膨胀率。
动手实践:生成自己的卷积动画
项目提供了完整的动画生成工具链,只需简单几步即可创建自定义卷积动画:
环境准备
首先克隆项目仓库:
git clone https://gitcode.com/gh_mirrors/co/conv_arithmetic
cd conv_arithmetic
生成Makefile
./bin/generate_makefile
生成所有动画
make all_animations
生成的动画将保存到 gif/ 目录,PDF和PNG格式的中间帧分别保存到 pdf/ 和 png/ 目录。你可以通过修改 templates/arithmetic_figure.txt 来自定义动画样式。
总结与扩展
通过项目提供的动画资源,我们直观理解了卷积算术的核心原理。这些动态演示不仅验证了理论公式,更揭示了参数变化对特征图的影响规律。无论是构建CNN模型还是调试特征尺寸不匹配问题,掌握这些可视化工具都将极大提升你的工作效率。
建议进一步阅读项目的技术报告 conv_arithmetic.tex,其中详细推导了各种卷积变体的数学公式,并提供了更多数值计算示例。
收藏本文,下次遇到卷积尺寸计算问题时,回来看看这些直观动画,复杂的数学公式将变得一目了然!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00









