InternLM-XComposer项目中的梯度检查点问题分析与解决方案
问题背景
在InternLM-XComposer项目的微调过程中,用户在使用finetune.sh脚本时遇到了一个关于梯度检查点(gradient checkpointing)的技术问题。具体表现为模型在运行过程中抛出了"CLIPEncoder对象没有_gradient_checkpointing_func属性"的错误。这个问题主要出现在InternLM-XComposer2d5-7b模型中,而InternLM-XComposer2-vl-7b模型则出现了其他兼容性问题。
问题根源分析
该问题的根本原因在于不同版本的transformers库对梯度检查点的实现方式发生了变化。在较新版本的transformers库中,梯度检查点的实现机制有所调整,导致与项目中使用的模型架构产生了兼容性问题。
具体来说,当使用transformers 4.36.0或更高版本时,CLIPVisionModel的梯度检查点功能无法自动启用,因为模型缺少必要的_gradient_checkpointing_func属性。这个问题在transformers 4.33.2版本中并不存在,因为该版本的实现机制与项目代码更为兼容。
解决方案
方案一:降级transformers版本
最直接的解决方案是将transformers库降级到4.33.2版本,同时保持torch版本为2.0.1。这是项目官方文档中明确建议的版本组合,能够确保所有功能正常运作。
pip install transformers==4.33.2 torch==2.0.1
方案二:手动启用梯度检查点
对于希望使用更高版本transformers的用户,可以通过修改build_mlp.py文件中的CLIPVisionTower类来手动启用梯度检查点功能:
def load_model(self):
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
self.vision_tower.gradient_checkpointing_enable({"use_reentrant": True})
self.vision_tower.requires_grad_(False)
self.is_loaded = True
这种方法通过在模型加载时显式启用梯度检查点功能,解决了新版本transformers中的兼容性问题。需要注意的是,这是一种临时解决方案,更完善的实现应该根据训练参数动态决定是否启用梯度检查点。
方案三:在finetune.py中全局设置
另一种更优雅的解决方案是在finetune.py中全局设置梯度检查点,这样既保持了代码的整洁性,又解决了兼容性问题。这种方法更适合于希望保持transformers库最新版本的用户。
技术原理深入
梯度检查点是一种内存优化技术,它通过在前向传播过程中不保存所有中间激活值,而是在反向传播时重新计算部分激活值,从而显著减少内存占用。这种技术在训练大型模型时尤为重要,因为它允许在有限的GPU内存下训练更大的模型或使用更大的batch size。
在transformers库的演进过程中,梯度检查点的实现方式经历了多次优化。新版本中采用了更灵活的实现机制,但这也带来了与某些定制化模型的兼容性挑战。InternLM-XComposer项目中的CLIPVisionTower组件就是一个典型案例,它需要显式地启用梯度检查点功能才能在新版本transformers中正常工作。
最佳实践建议
- 对于生产环境或需要稳定性的场景,建议使用项目官方推荐的transformers 4.33.2版本
- 对于研究环境或需要新特性的场景,可以采用手动启用梯度检查点的方案
- 关注项目未来的更新,特别是IXC 3.0版本,预计将提供对新版本transformers的更好支持
- 在修改代码时,建议添加适当的注释说明修改原因,便于后续维护
总结
InternLM-XComposer项目中遇到的梯度检查点问题是一个典型的深度学习框架版本兼容性问题。通过理解问题的技术本质,我们提供了多种解决方案,从简单的版本降级到代码修改,满足了不同用户的需求。随着深度学习生态系统的快速发展,这类兼容性问题会越来越常见,掌握分析和解决这类问题的能力对于深度学习从业者来说至关重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00