Swift 中的 Protocol Buffers:基于protobuf-swift 的实战指南
项目介绍
protobuf-swift 是一个用于苹果 Swift 环境下的 Google Protocol Buffers 实现。它允许开发者在高效的序列化数据格式和 Swift 语言的安全性之间架起桥梁。此项目源自 Google 的原生 Protocol Buffers 技术,并且特别适配了 Swift 开发的需求。
项目快速启动
安装 Protocol Buffers 编译器(protoc)
在 Ubuntu 上手动安装(示例为 v3.2.0):
- 下载 protoc 3.2.0 版本。
wget https://github.com/google/protobuf/releases/download/v3.2.0/protobuf-cpp-3.2.0.tar.gz - 解压缩并编译安装。
tar xzf protobuf-cpp-3.2.0.tar.gz cd protobuf-3.2.0 ./autogen.sh ./configure make && sudo make install
使用 Homebrew(Mac OS):
如果你正在使用 Mac,可以通过 Homebrew 更简化地安装 protoc 和 protobuf-swift。
首先安装 Homebrew,如果未安装的话:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
然后安装 protoc:
brew install protobuf
以及 protobuf-swift 相关工具:
git clone https://github.com/alexeyxo/protobuf-swift.git
cd protobuf-swift
./script/build.sh
添加到你的项目中
-
CocoaPods: 在 Podfile 中添加以下行,然后运行
pod install。use_frameworks! pod 'ProtocolBuffers-Swift' -
Carthage: 在 Cartfile 中写入:
github "alexeyxo/protobuf-swift"
接下来,你需要为你的 .proto 文件生成 Swift 代码。这通常通过 protoc 和特定于 Swift 的插件来完成。
应用案例和最佳实践
假设你有一个简单的 .proto 文件定义,如 person.proto:
syntax = "proto3";
message Person {
int32 id = 1;
string name = 2;
string email = 3;
}
-
使用 protoc 生成 Swift 代码:
protoc --swift_out=. person.proto -
在 Swift 中使用生成的类进行序列化和反序列化:
import ProtocolBuffers
let person = Person(id: 123, name: "Alice", email: "alice@example.com")
let data = try person.data()
// 反序列化
if let deserializedPerson = Person.parse(from: data) {
print(deserializedPerson)
}
典型生态项目
除了 protobuf-swift,还有另一个备受瞩目的生态项目——apple/swift-protobuf,由苹果官方维护,它提供了一个更加成熟稳定的解决方案,支持最新的 Swift 版本和特性,包括更好的集成性和错误处理机制。如果你的项目需要长期支持和社区活跃度更高的库,建议考虑使用 swift-protobuf。
使用 swift-protobuf 的基本步骤类似,但是它可能提供了更现代的API和支持方式,比如自动代码生成配置更加简便,同时与 Swift 生态系统有更好的整合体验。
以上就是快速上手 protobuf-swift 的简要教程,确保在实际应用时查阅最新版本的文档以获取最准确的信息和推荐做法。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00