Drizzle:为Apache Spark带来低延迟执行的利器
2024-09-19 14:53:17作者:秋阔奎Evelyn
项目介绍
在实时数据处理和迭代计算日益重要的今天,Apache Spark作为大数据处理的核心工具,其性能和效率显得尤为关键。然而,传统的Spark在处理流数据和迭代任务时,由于其批处理调度模型(BSP)的限制,往往会导致较高的延迟和较低的吞吐量。为了解决这一问题,Drizzle应运而生。
Drizzle是一个专为Apache Spark设计的低延迟执行引擎,特别针对流处理和迭代工作负载进行了优化。通过引入“组调度”机制,Drizzle能够在一次调度中处理多个计算批次,从而显著降低任务调度的开销,提升系统的整体性能。
项目技术分析
Drizzle的核心创新在于其“组调度”机制。传统的Spark在每个任务结束后都会调用调度器,这不仅增加了系统的开销,还导致了较高的延迟。Drizzle通过将多个计算批次(或称为“组”)一次性调度,有效地将任务执行的粒度与调度解耦,从而减少了任务序列化和启动的成本。
此外,Drizzle提供了一个低级别的API,通过SparkContext中的runJobs方法来实现这一功能。用户可以通过该API直接操作RDD,并指定相应的计算函数。这种设计不仅提高了灵活性,还为用户提供了更细粒度的控制。
项目及技术应用场景
Drizzle特别适用于以下场景:
- 实时流处理:在需要低延迟和高吞吐量的实时流处理应用中,Drizzle能够显著提升数据处理的效率。
- 迭代计算:对于机器学习、图计算等需要大量迭代计算的场景,Drizzle的优化调度机制能够有效减少每次迭代的延迟。
- 大规模集群:在大型分布式集群中,Drizzle的优势尤为明显。通过减少调度开销,Drizzle能够在大规模集群中实现更高的性能。
项目特点
- 低延迟:通过组调度机制,Drizzle显著降低了任务调度的开销,从而实现了更低的延迟。
- 高吞吐量:Drizzle的优化设计使得系统能够在相同资源下处理更多的任务,提高了整体吞吐量。
- 灵活的API:Drizzle提供了一个低级别的API,允许用户直接操作RDD并指定计算函数,提供了更高的灵活性和控制力。
- 易于集成:Drizzle的设计考虑了与现有Spark生态系统的兼容性,未来将通过Spark JIRA进一步讨论与Apache Spark项目的集成。
结语
Drizzle为Apache Spark带来了新的可能性,特别是在低延迟和高吞吐量的应用场景中。无论你是大数据工程师、数据科学家,还是对实时数据处理感兴趣的开发者,Drizzle都值得你一试。通过Drizzle,你将能够更高效地处理大规模数据,实现更快的迭代计算,从而在激烈的市场竞争中占据优势。
立即访问Drizzle的GitHub仓库,开始你的低延迟数据处理之旅吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19