Azure Cosmos DB Spark 连接器使用指南
2024-10-09 23:33:51作者:庞眉杨Will
项目介绍
Azure Cosmos DB Spark 连接器 是一个官方支持的桥梁,它实现了Azure Cosmos DB与Apache Spark之间的无缝数据交互。该连接器让开发者能够通过Python和Scala,在Apache Spark DataFrames上轻松地读取和写入Cosmos DB的数据,实现全球化复制下的低延迟大数据处理,适用于批处理、流处理以及服务层构建等场景。最新版本适应了Spark 3.x的环境,并提供了详细的配置参考和迁移指南。
项目快速启动
安装与依赖
确保你的开发环境中已安装正确的Apache Spark版本(支持2.2.1及以上)及Scala对应版本。对于最新的Spark 3.x应用,应使用新的Maven坐标来添加依赖项:
<dependency>
<groupId>com.azure.cosmos.spark</groupId>
<artifactId>azure-cosmos-spark_3-1_2-12</artifactId>
<version>4.0.0</version>
</dependency>
读取Cosmos DB示例
在Python中快速启动读取操作:
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('CosmosDBRead').getOrCreate()
readConfig = {
"Endpoint": "https://your-account.documents.azure.com:443/",
"Masterkey": "<Your_Master_Key>",
"Database": "YourDatabase",
"Collection": "YourCollection",
"SamplingRatio": "1.0"
}
df = spark.read.format("com.microsoft.azure.cosmosdb.spark").options(**readConfig).load()
print(df.count())
在Scala中的相似示例:
import org.apache.spark.sql.SparkSession
import com.microsoft.azure.cosmosdb.spark.config.Config
val spark = SparkSession.builder.appName("CosmosDBScalaRead").getOrCreate()
val readConfig = Config(Map(
"Endpoint" -> "https://your-account.documents.azure.com:443/",
"Masterkey" -> "<Your_Master_Key>",
"Database" -> "YourDatabase",
"Collection" -> "YourCollection"
))
val df = spark.read.cosmosDB(readConfig)
println(df.count())
写入Cosmos DB示例
同样在Python进行写入操作:
writeConfig = {
"Endpoint": "https://your-account.documents.azure.com:443/",
"Masterkey": "<Your_Master_Key>",
"Database": "YourDatabase",
"Collection": "TargetCollection",
"Upsert": "true"
}
df.write.format("com.microsoft.azure.cosmosdb.spark").options(**writeConfig).save()
Scala版本的写入示例:
val writeConfig = Config(Map(
"Endpoint" -> "https://your-account.documents.azure.com:443/",
"Masterkey" -> "<Your_Master_Key>",
"Database" -> "YourDatabase",
"Collection" -> "TargetCollection",
"Upsert" -> "true"
))
df.write.mode("append").cosmosDB(writeConfig)
应用案例与最佳实践
- 实时数据分析: 利用Cosmos DB作为数据湖的实时注入点,结合Spark进行复杂的流式计算分析。
- 大数据批处理: 批量导入或导出海量数据,进行历史数据分析,如客户行为分析、市场趋势预测等。
- 全球分布式架构: 在多区域部署的应用中,利用Cosmos DB的全局分布特性,结合Spark实现数据的一致性访问和处理。
- Lambda架构: 结合Cosmos DB和Spark构建混合处理系统,兼顾实时处理和批量处理的需求,优化数据处理效率。
典型生态项目
- Azure Databricks集成: 使用Databricks时,可以通过库管理功能直接添加连接器,简化大数据分析流程。
- 微服务数据同步: 在微服务架构中,Cosmos DB Spark连接器用于自动同步不同服务间的数据,保持数据一致性。
- 图形数据分析: 利用Cosmos DB存储图数据库,通过Spark执行复杂的图算法进行社交网络分析、推荐系统构建等。
请注意,使用任何生产环境之前,请详细阅读项目文档,以获取最新的版本信息、配置细节和最佳实践建议。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

Ascend Extension for PyTorch
Python
75
105

仓颉编程语言测试用例。
Cangjie
34
61

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401