引导式图像修复项目教程
2024-09-20 04:33:44作者:侯霆垣
1. 项目介绍
项目概述
guided-inpainting 是一个开源项目,旨在通过两流方法解决视频编辑任务中的图像修复问题。该项目由 Runway ML 开发,主要用于处理视频中的对象移除和遮罩传播等任务。传统的全局注意力方法在处理高频细节(如纹理)时表现不佳,而该项目通过结合局部和全局特征交互,显著提升了图像修复的质量。
主要特点
- 两流方法:高频特征通过局部交互传播,低频特征通过全局交互传播。
- 鲁棒性:在处理大范围相机运动等复杂情况时表现出色。
- 性能提升:在视频修复任务中,FID 和 LPIPS 评分分别提高了 44% 和 26%。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Conda。然后,创建并激活项目环境:
conda env create -f env.yaml
conda activate guided-inpainting
下载预训练模型
下载 RAFT 和 LaMa 的预训练模型,并放置到指定目录:
# 下载 RAFT 模型
wget https://path/to/raft-things.pth -O checkpoints/flow/raft/raft-things.pth
# 下载 LaMa 模型
wget https://path/to/encoder_epoch_20.pth -O checkpoints/lama/ade20k/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth
运行评估
使用预训练模型进行评估:
python gi/main.py --base configs/<model>.yaml --gpus 0 --train false --resume_from_checkpoint models/<model>.ckpt
3. 应用案例和最佳实践
应用案例
- 视频对象移除:通过引导式修复技术,可以有效地移除视频中的特定对象,同时保持背景的连贯性。
- 遮罩传播:在视频编辑中,遮罩的准确传播是关键。该项目通过两流方法,确保遮罩在不同帧之间的高质量传播。
最佳实践
- 数据准备:确保输入数据的质量,特别是关键帧的选择,对最终效果有显著影响。
- 模型调优:根据具体任务调整模型参数,如局部和全局交互的权重,以达到最佳效果。
4. 典型生态项目
相关项目
- RAFT:用于光流估计的模型,是该项目中用于局部特征对齐的关键组件。
- LaMa:用于图像修复的模型,提供了高频特征的感知损失。
- DEVIL:用于视频修复的基准测试,提供了评估和比较不同方法的平台。
生态整合
- RAFT 和 LaMa:通过结合这两个项目,
guided-inpainting能够更有效地处理高频和低频特征,提升修复质量。 - DEVIL 基准测试:通过 DEVIL 平台,可以系统地评估和比较不同视频修复方法的性能。
通过以上步骤和案例,你可以快速上手并深入了解 guided-inpainting 项目,并在实际应用中取得良好的效果。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355