引导式图像修复项目教程
2024-09-20 08:33:24作者:侯霆垣
1. 项目介绍
项目概述
guided-inpainting 是一个开源项目,旨在通过两流方法解决视频编辑任务中的图像修复问题。该项目由 Runway ML 开发,主要用于处理视频中的对象移除和遮罩传播等任务。传统的全局注意力方法在处理高频细节(如纹理)时表现不佳,而该项目通过结合局部和全局特征交互,显著提升了图像修复的质量。
主要特点
- 两流方法:高频特征通过局部交互传播,低频特征通过全局交互传播。
- 鲁棒性:在处理大范围相机运动等复杂情况时表现出色。
- 性能提升:在视频修复任务中,FID 和 LPIPS 评分分别提高了 44% 和 26%。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Conda。然后,创建并激活项目环境:
conda env create -f env.yaml
conda activate guided-inpainting
下载预训练模型
下载 RAFT 和 LaMa 的预训练模型,并放置到指定目录:
# 下载 RAFT 模型
wget https://path/to/raft-things.pth -O checkpoints/flow/raft/raft-things.pth
# 下载 LaMa 模型
wget https://path/to/encoder_epoch_20.pth -O checkpoints/lama/ade20k/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth
运行评估
使用预训练模型进行评估:
python gi/main.py --base configs/<model>.yaml --gpus 0 --train false --resume_from_checkpoint models/<model>.ckpt
3. 应用案例和最佳实践
应用案例
- 视频对象移除:通过引导式修复技术,可以有效地移除视频中的特定对象,同时保持背景的连贯性。
- 遮罩传播:在视频编辑中,遮罩的准确传播是关键。该项目通过两流方法,确保遮罩在不同帧之间的高质量传播。
最佳实践
- 数据准备:确保输入数据的质量,特别是关键帧的选择,对最终效果有显著影响。
- 模型调优:根据具体任务调整模型参数,如局部和全局交互的权重,以达到最佳效果。
4. 典型生态项目
相关项目
- RAFT:用于光流估计的模型,是该项目中用于局部特征对齐的关键组件。
- LaMa:用于图像修复的模型,提供了高频特征的感知损失。
- DEVIL:用于视频修复的基准测试,提供了评估和比较不同方法的平台。
生态整合
- RAFT 和 LaMa:通过结合这两个项目,
guided-inpainting能够更有效地处理高频和低频特征,提升修复质量。 - DEVIL 基准测试:通过 DEVIL 平台,可以系统地评估和比较不同视频修复方法的性能。
通过以上步骤和案例,你可以快速上手并深入了解 guided-inpainting 项目,并在实际应用中取得良好的效果。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19