高级语义注意力驱动的图像修复:Coherent Semantic Attention for image inpainting
2024-05-23 15:31:11作者:薛曦旖Francesca
在这个数字化的时代,我们经常会遇到照片破损或缺失部分的情况,而Coherent Semantic Attention for image inpainting(CSA-inpainting)是一个创新的深度学习解决方案,旨在恢复这些受损图片的原始风貌。该开源项目源自ICCV 2019会议的一篇论文,并已在GitHub上公开,为用户提供了一个强大的工具来修复图像中的空缺区域。
项目介绍
CSA-inpainting的核心是利用一个新颖的**Coherent Semantic Attention (CSA)**层,它借鉴了人类修复图像的行为模式,致力于在保留上下文结构的同时,通过建模空洞特征之间的语义相关性来更精确地预测缺失的部分。此外,项目还引入了一致性损失和特征补丁鉴别器,以稳定网络训练过程并提升细节质量。

项目技术分析
该项目采用了先进的深度学习架构,其中包括:
- CSA层:这一关键组件通过捕获空洞区域内潜在的语义信息,实现了像素级别的连续性和结构完整性。
- Model Architecture:整体模型设计巧妙,包含CSA层和其他辅助组件,如一致性损失和特征补丁鉴别器,共同促进了高质量的图像修复效果。
- Feature patch discriminator:该模块增强了模型对细节的感知,有助于区分真实与伪造的图像部分,从而提高修复结果的真实性。

应用场景
CSA-inpainting适用场景广泛,包括但不限于:
- 老照片修复
- 数字艺术创作
- 影像处理软件集成
- 图像编辑和增强
- 去水印和隐私保护
项目特点
- 高效算法:利用深度学习技术,精准预测并填充图像空白区域。
- 语义相关性:CSA层确保了修复内容与其周围环境的语义一致性。
- 结构保持:不仅修复纹理,还能保持图像原有的结构和轮廓。
- 易于使用:支持Python3,依赖PyTorch 1.0,兼容Windows和Linux系统,并提供Jupyter Notebook接口。
- 可定制化:用户可以根据需求调整参数,适应不同数据集和修复任务。
- 社区支持:源代码已公开,用户可以自由贡献和改进。
如果你需要一款能够智能、准确地修复图像的工具,CSA-inpainting绝对值得尝试。现在就前往GitHub仓库,开始你的图像修复之旅吧!
git clone https://github.com/KumapowerLIU/CSA-inpainting.git
cd CSA-inpainting
请注意,本项目仅限于教育和学术研究用途,遵循CC 4.0 Attribution-NonCommercial国际许可协议。如果你在工作中使用了这个模型,请引用相关的研究论文。
@InProceedings{Liu_2019_CSA,
Author = {Hongyu Liu and Bin Jiang and Yi Xiao and Chao Yang},
Title = {Coherent Semantic Attention for Image Inpainting},
booktitle = { IEEE International Conference on Computer Vision (ICCV)},
month = {July},
year = {2019}
}
感谢 Shift-net 提供的技术启发和支持。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
443
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
822
397
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
556
111