TorchCV 开源项目使用教程
2024-09-18 12:15:22作者:翟萌耘Ralph
1. 项目介绍
TorchCV 是一个基于 PyTorch 的计算机视觉框架,旨在为深度学习在计算机视觉中的应用提供一个统一的代码库。该项目由北京大学的学生 Donny You 开发,支持多种计算机视觉任务,包括图像分类、语义分割、目标检测、姿态检测、实例分割和生成对抗网络等。TorchCV 提供了大量先进的模型实现,并且致力于保持代码库的最新状态。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Python 3.x 和 PyTorch 1.3 或更高版本。然后,通过以下命令安装 TorchCV 及其依赖项:
pip3 install -r requirements.txt
编译扩展
接下来,编译 TorchCV 的扩展模块:
cd lib/exts
sh make.sh
示例代码
以下是一个简单的示例代码,展示如何使用 TorchCV 进行图像分类:
import torch
from torchcv.models import ResNet
# 加载预训练的 ResNet 模型
model = ResNet(pretrained=True)
# 加载图像并进行预处理
image = torch.randn(1, 3, 224, 224) # 假设图像已经预处理为 224x224 的尺寸
# 进行前向传播
output = model(image)
# 打印输出结果
print(output)
3. 应用案例和最佳实践
图像分类
TorchCV 支持多种图像分类模型,如 VGG、ResNet、DenseNet 和 ShuffleNet。以下是一个使用 ResNet 进行图像分类的示例:
from torchcv.models import ResNet
model = ResNet(pretrained=True)
image = torch.randn(1, 3, 224, 224)
output = model(image)
print(output)
语义分割
对于语义分割任务,TorchCV 提供了 DeepLabV3 和 PSPNet 等模型。以下是一个使用 DeepLabV3 进行语义分割的示例:
from torchcv.models import DeepLabV3
model = DeepLabV3(pretrained=True)
image = torch.randn(1, 3, 512, 512)
output = model(image)
print(output)
目标检测
TorchCV 支持 SSD 和 Faster R-CNN 等目标检测模型。以下是一个使用 SSD 进行目标检测的示例:
from torchcv.models import SSD
model = SSD(pretrained=True)
image = torch.randn(1, 3, 300, 300)
output = model(image)
print(output)
4. 典型生态项目
数据集处理
TorchCV 提供了数据集处理的脚本,位于 datasets/seg/preprocess 目录下。你可以使用这些脚本对开源数据集进行预处理。
模型训练与评估
TorchCV 提供了命令行工具,用于模型的训练和评估。以下是一个使用 PSPNet 进行训练和评估的示例:
# 训练
cd scripts/seg/cityscapes/
bash run_fs_pspnet_cityscapes_seg.sh train tag
# 验证
bash run_fs_pspnet_cityscapes_seg.sh val tag
# 测试
bash run_fs_pspnet_cityscapes_seg.sh test tag
通过以上步骤,你可以快速上手 TorchCV,并利用其强大的功能进行计算机视觉任务的开发和研究。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
332
395
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
748
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246