DNL-Semantic-Segmentation 项目使用教程
2024-09-18 15:43:01作者:滕妙奇
1. 项目介绍
DNL-Semantic-Segmentation 是一个基于 PyTorch 的开源项目,旨在通过解耦非局部神经网络(Disentangled Non-Local Neural Networks)来提升语义分割任务的性能。该项目提供了相关代码和配置文件,用于在 Cityscapes 和 ADE20K 数据集上复现 "Disentangled Non-Local Neural Networks" 的研究成果。
主要特点
- 解耦设计:将非局部块的注意力计算分解为成对项和单项,分别表示像素之间的关系和每个像素的显著性。
- 性能提升:在多个任务中,如语义分割、对象检测和动作识别,解耦设计表现出色。
- 易于复现:提供了详细的代码和配置文件,方便研究人员和开发者复现和扩展。
2. 项目快速启动
环境准备
- 操作系统:Linux 或 macOS(Windows 目前不正式支持)。
- Python 版本:3.6 及以上。
- PyTorch 版本:1.0 及以上。
- CUDA 版本:9.0 及以上。
安装步骤
-
创建并激活 Conda 虚拟环境:
conda create -n dnlnet python=3.6 -y conda activate dnlnet -
安装 PyTorch 和 torchvision:
conda install pytorch torchvision -c pytorch -
克隆项目仓库:
git clone https://github.com/yinmh17/DNL-Semantic-Segmentation.git cd DNL-Semantic-Segmentation -
安装依赖:
pip3 install -r requirements.txt cd exts sh make.sh
训练模型
- 数据预处理:按照
datasets/seg/preprocess中的说明预处理数据集。 - 下载预训练模型:下载 ImageNet 预训练的 3x3-Resnet101 模型。
- 训练模型:
bash scripts/seg/cityscapes/run_fs_res101_nonlocalnowd_ln_cityscapes_seg.sh train tag /torchcv/data/cityscapes /pretrained_models/3x3resnet101-imagenet.pth
模型推理
- 验证模型:
bash scripts/seg/cityscapes/run_fs_res101_nonlocalnowd_ln_cityscapes_seg.sh val tag /torchcv/data/cityscapes
3. 应用案例和最佳实践
应用案例
- 语义分割:在 Cityscapes、ADE20K 和 PASCAL Context 数据集上进行语义分割任务。
- 对象检测:在 COCO 数据集上进行对象检测任务。
- 动作识别:在 Kinetics 数据集上进行动作识别任务。
最佳实践
- 数据增强:使用数据增强技术(如随机裁剪、翻转等)来提高模型的泛化能力。
- 模型微调:在特定任务上微调预训练模型,以获得更好的性能。
- 多尺度训练:使用多尺度训练策略,以提高模型对不同尺度对象的识别能力。
4. 典型生态项目
- PyTorch:深度学习框架,支持高效的神经网络训练和推理。
- torchvision:提供常用的计算机视觉数据集、模型架构和图像转换工具。
- Cityscapes:用于语义分割任务的高质量数据集,包含城市街景图像。
- ADE20K:用于场景解析任务的数据集,包含丰富的室内外场景图像。
通过结合这些生态项目,DNL-Semantic-Segmentation 能够更好地应用于实际的计算机视觉任务中。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137