Hardhat项目中Solidity堆栈跟踪的推断错误显示问题解析
背景介绍
在区块链智能合约开发中,错误处理和调试是开发者日常工作中不可或缺的部分。Hardhat作为一款流行的区块链开发环境,提供了强大的调试功能,其中堆栈跟踪(Stack Trace)是帮助开发者快速定位问题的重要工具。
问题现象
在Hardhat v3版本中,开发者发现Solidity堆栈跟踪没有显示推断错误(inferred errors)。具体表现为:
当合约调用失败时,如果使用Solidity编写的测试用例,错误信息仅显示基本的"EvmError: Revert"和调用堆栈,而不会显示更详细的错误原因。但同样的合约如果使用TypeScript测试,则能正确显示推断的错误信息,如"Transaction reverted: function call to a non-contract account"。
技术分析
这个问题源于Hardhat对开发运行时返回的错误信息处理不完整。开发运行时实际上已经返回了推断错误信息,但Hardhat的堆栈跟踪功能没有充分利用这些信息。
以示例代码为例:
interface Bar {
function g() external;
}
contract Foo {
function f() public {
Bar(0x1111111111111111111111111111111111111111).g();
}
}
当调用f()函数时,实际上是对一个不存在的合约地址(0x111...111)进行调用,这应该产生"function call to a non-contract account"的错误提示。
解决方案
该问题已在Hardhat的内部版本中修复。修复的核心是确保Hardhat正确处理并显示开发运行时返回的完整错误信息,包括推断错误。
修复后,无论是通过Solidity测试还是TypeScript测试,开发者都能看到完整的错误信息,包括:
- 错误类型(Revert)
- 详细的错误原因
- 完整的调用堆栈
对开发者的影响
这个改进显著提升了开发体验:
- 调试效率提升:开发者不再需要切换测试方式就能获取完整错误信息
- 错误定位更准确:详细的错误描述帮助开发者更快理解问题本质
- 开发流程统一:无论使用哪种测试方式,都能获得一致的错误反馈
最佳实践建议
对于智能合约开发者,建议:
- 保持Hardhat版本更新,以获取最新的调试功能改进
- 在复杂合约开发中,结合使用Solidity和TypeScript测试
- 充分利用堆栈跟踪信息进行问题定位
- 对于接口调用等易出错操作,添加适当的错误处理逻辑
总结
Hardhat对Solidity堆栈跟踪中推断错误显示的改进,体现了其对开发者体验的持续优化。这类看似微小的改进实际上能显著提升开发效率,减少调试时间,是智能合约开发工具链成熟度的重要标志。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00