ParadeDB v0.15.17 版本发布:搜索性能优化与稳定性提升
ParadeDB 是一个基于 PostgreSQL 的搜索引擎扩展,它为 PostgreSQL 数据库提供了高性能的全文搜索能力。通过深度集成 PostgreSQL 和 Tantivy(一个用 Rust 编写的高性能全文搜索引擎),ParadeDB 让开发者能够在熟悉的 SQL 环境中实现复杂的搜索功能。
本次发布的 v0.15.17 版本主要聚焦于搜索性能优化、查询下推功能增强以及系统稳定性改进。作为一次维护性更新,它修复了多个关键问题并引入了一些实用的新特性。
查询下推功能增强
查询下推是 ParadeDB 的核心优化手段之一,它允许将更多的查询逻辑下推到搜索引擎层面执行,减少不必要的数据传输和计算。本次版本在这方面做了多项改进:
-
布尔字段查询优化:修复了布尔字段(bool_field)在查询下推时的行为不一致问题,现在
field = TRUE和field = FALSE的查询都能被正确下推执行,且与 NULL 值的处理保持一致。 -
VARCHAR 类型支持:扩展了查询下推功能,现在支持对 VARCHAR 类型字段的谓词下推,进一步扩大了优化范围。
-
分区表优化:改进了在分区表上执行
ORDER BY ... LIMIT ...查询时的下推逻辑,确保这类常见分页查询能在分区表上高效执行。
索引与存储优化
索引管理是搜索性能的关键,新版本在这方面做了多项改进:
-
索引创建并行度控制:将
create_index_parallelism参数改为用户可配置,允许根据实际硬件资源调整索引创建的并行度,平衡创建速度与系统负载。 -
段合并策略优化:改进了段合并候选列表的筛选逻辑,排除了由
CREATE INDEX创建的段,避免不必要的合并操作,提升索引维护效率。 -
存储默认值调整:不再默认将所有字段设置为
stored = true,减少了不必要的存储开销,用户需要显式指定需要存储的字段。
新增关键字分词器
引入了一个新的keyword分词器,这种分词器将整个字段值视为一个不可分割的词条。这对于需要精确匹配的场景(如ID、标签、分类代码等)非常有用,避免了标准分词器可能带来的分词问题。
系统稳定性改进
-
原子性增强:改进了
LinkedItemList的实现,提高了链表操作的原子性,减少了并发场景下的潜在问题。 -
自动清理优化:增加了在物理副本上执行真空清理(vacuum)时取消查询的功能,避免长时间运行的查询阻塞维护操作。
-
规范化器要求:明确了使用
normalizer设置时必须指定fast:true的要求,避免了配置不当导致的性能问题。
版本兼容性
ParadeDB v0.15.17 继续保持了对多个 PostgreSQL 版本的支持,包括 PostgreSQL 14、15、16 和 17。同时提供了针对不同操作系统(包括各种 Linux 发行版和 macOS)的安装包,确保在各种环境下的可用性。
总结
ParadeDB v0.15.17 虽然是一个维护版本,但通过多项查询下推优化、索引管理改进和稳定性增强,显著提升了搜索性能和系统可靠性。特别是对布尔字段和 VARCHAR 类型的查询下推支持,使得更多类型的查询能够受益于搜索引擎的高效执行。新增的keyword分词器则为特定场景提供了更精确的搜索能力。这些改进使得 ParadeDB 在作为 PostgreSQL 的搜索扩展时,能够提供更加全面和高效的搜索体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01