ParadeDB v0.15.17 版本发布:搜索性能优化与稳定性提升
ParadeDB 是一个基于 PostgreSQL 的搜索引擎扩展,它为 PostgreSQL 数据库提供了高性能的全文搜索能力。通过深度集成 PostgreSQL 和 Tantivy(一个用 Rust 编写的高性能全文搜索引擎),ParadeDB 让开发者能够在熟悉的 SQL 环境中实现复杂的搜索功能。
本次发布的 v0.15.17 版本主要聚焦于搜索性能优化、查询下推功能增强以及系统稳定性改进。作为一次维护性更新,它修复了多个关键问题并引入了一些实用的新特性。
查询下推功能增强
查询下推是 ParadeDB 的核心优化手段之一,它允许将更多的查询逻辑下推到搜索引擎层面执行,减少不必要的数据传输和计算。本次版本在这方面做了多项改进:
-
布尔字段查询优化:修复了布尔字段(bool_field)在查询下推时的行为不一致问题,现在
field = TRUE
和field = FALSE
的查询都能被正确下推执行,且与 NULL 值的处理保持一致。 -
VARCHAR 类型支持:扩展了查询下推功能,现在支持对 VARCHAR 类型字段的谓词下推,进一步扩大了优化范围。
-
分区表优化:改进了在分区表上执行
ORDER BY ... LIMIT ...
查询时的下推逻辑,确保这类常见分页查询能在分区表上高效执行。
索引与存储优化
索引管理是搜索性能的关键,新版本在这方面做了多项改进:
-
索引创建并行度控制:将
create_index_parallelism
参数改为用户可配置,允许根据实际硬件资源调整索引创建的并行度,平衡创建速度与系统负载。 -
段合并策略优化:改进了段合并候选列表的筛选逻辑,排除了由
CREATE INDEX
创建的段,避免不必要的合并操作,提升索引维护效率。 -
存储默认值调整:不再默认将所有字段设置为
stored = true
,减少了不必要的存储开销,用户需要显式指定需要存储的字段。
新增关键字分词器
引入了一个新的keyword
分词器,这种分词器将整个字段值视为一个不可分割的词条。这对于需要精确匹配的场景(如ID、标签、分类代码等)非常有用,避免了标准分词器可能带来的分词问题。
系统稳定性改进
-
原子性增强:改进了
LinkedItemList
的实现,提高了链表操作的原子性,减少了并发场景下的潜在问题。 -
自动清理优化:增加了在物理副本上执行真空清理(vacuum)时取消查询的功能,避免长时间运行的查询阻塞维护操作。
-
规范化器要求:明确了使用
normalizer
设置时必须指定fast:true
的要求,避免了配置不当导致的性能问题。
版本兼容性
ParadeDB v0.15.17 继续保持了对多个 PostgreSQL 版本的支持,包括 PostgreSQL 14、15、16 和 17。同时提供了针对不同操作系统(包括各种 Linux 发行版和 macOS)的安装包,确保在各种环境下的可用性。
总结
ParadeDB v0.15.17 虽然是一个维护版本,但通过多项查询下推优化、索引管理改进和稳定性增强,显著提升了搜索性能和系统可靠性。特别是对布尔字段和 VARCHAR 类型的查询下推支持,使得更多类型的查询能够受益于搜索引擎的高效执行。新增的keyword
分词器则为特定场景提供了更精确的搜索能力。这些改进使得 ParadeDB 在作为 PostgreSQL 的搜索扩展时,能够提供更加全面和高效的搜索体验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









