BackgroundSubtractorCNT 的安装和配置教程
项目基础介绍
BackgroundSubtractorCNT 是一个用于背景减除的开源项目,它是 OpenCV 中背景减除解决方案的替代品。这个项目提供了比 OpenCV 中其他任何背景减除方法都要快的处理速度,尤其适合在低规格硬件上使用。它采用了一种创新的算法,并与 MOG2 方法进行了比较,结果显示其速度远超 MOG2。BackgroundSubtractorCNT 已经集成到最新的 OpenCV 版本中,因此用户无需单独安装。
主要编程语言
该项目主要使用 C++ 编写,同时也包含了 Python 绑定。
项目使用的关键技术和框架
BackgroundSubtractorCNT 使用了一种名为 CNT 的新算法进行背景减除,该算法优化了处理速度,使其在处理视频流时更加高效。项目依赖于 OpenCV 框架,并可以使用 SWIG 工具生成 Python 绑定,以便在 Python 环境中使用。
准备工作
在开始安装 BackgroundSubtractorCNT 之前,您需要确保以下准备工作已经完成:
- 安装 CMake,这是一个跨平台安装(编译)工具,用于生成特定平台的 Makefile。
- 安装 Git,用于从 GitHub 下载源代码。
- 如果您打算在 Python 中使用 BackgroundSubtractorCNT,还需要安装 SWIG 和对应版本的 Python 编译器。
安装步骤
克隆项目源代码
首先,您需要从 GitHub 克隆 BackgroundSubtractorCNT 的源代码:
git clone https://github.com/sagi-z/BackgroundSubtractorCNT.git
创建构建目录
在源代码目录中创建一个构建目录并切换到该目录下:
cd BackgroundSubtractorCNT
mkdir build
cd build
配置项目
使用 CMake 配置项目。以下命令将默认创建一个发布版本的静态库,不包含 C++ 演示和 Python 扩展:
cmake ..
如果您需要更改默认设置,例如启用测试、创建共享库或启用 Python 扩展,可以使用以下命令:
cmake -DBUILD_TEST=ON -DBUILD_SHARED_LIBS=ON -DPYTHON_EXTENSION=ON -DCMAKE_BUILD_TYPE=DEBUG ..
编译项目
配置完成后,使用以下命令编译项目:
make
安装项目
编译成功后,可以使用以下命令将项目安装到系统中:
sudo make install
如果您希望以更干净的方式安装,可以使用 CPack 创建一个 Debian 包,然后使用 dpkg 进行安装:
cpack -G DEB
sudo dpkg -i ./bgsubcnt-1.1.3-Linux.deb
以上就是 BackgroundSubtractorCNT 的安装和配置指南。安装完成后,您就可以在 C++ 或 Python 项目中使用这个库来进行高效的背景减除了。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00