AsyncSSH项目中SFTP与Shell会话冲突的解决方案
问题背景
在使用AsyncSSH构建自定义SSH服务器时,开发者可能会遇到一个常见问题:当同时启用SFTP功能和Shell会话功能时,Shell会话会意外失败。具体表现为客户端连接时出现"shell request failed on channel 0"错误,而服务器日志显示认证成功后立即关闭了连接。
问题分析
这种现象的根本原因在于AsyncSSH的会话处理机制。当开发者通过sftp_factory参数启用SFTP功能时,AsyncSSH会默认接管所有会话请求的处理,包括Shell、Exec和Subsystem等。如果此时没有明确指定其他会话类型的处理方式,系统会拒绝这些请求。
解决方案
方案一:使用session_factory或process_factory
最简单的解决方案是在创建服务器时同时指定sftp_factory和process_factory参数:
await asyncssh.create_server(
lambda: SSHServer(interact),
"",
port,
server_host_keys=["/etc/ssh/ssh_host_ecdsa_key"],
sftp_factory=SFTPServer,
process_factory=handle_client_process
)
其中handle_client_process是一个处理客户端进程的函数,可以获取连接信息:
def handle_client_process(process):
username = process.get_extra_info('username')
process.stdout.write(f'Welcome, {username}!\n')
process.exit(0)
方案二:自定义SSHServer类
对于需要更复杂控制的情况,可以创建自定义的SSHServer子类,并实现相应的回调方法:
class CustomSSHServer(asyncssh.SSHServer):
def __init__(self, interact):
self.interact = interact
self.user = None
def session_requested(self):
return self.handle_session
def handle_session(self, stdin, stdout, stderr):
# 自定义会话处理逻辑
stdout.write(f"Hello {self.user}!\n")
方案三:混合使用工厂方法和回调
也可以结合使用工厂方法和回调方法,根据不同的会话类型采取不同的处理方式:
class HybridSSHServer(asyncssh.SSHServer):
def shell_requested(self):
return True # 允许Shell会话
def exec_requested(self, command):
return self.handle_exec_command(command)
def subsystem_requested(self, subsystem):
if subsystem == 'sftp':
return True # 允许SFTP
return False
注意事项
-
会话状态管理:当需要维护会话特定状态时,可以使用
functools.partial来传递额外参数。 -
PromptToolkit集成:如果使用PromptToolkit创建交互式Shell,需要注意它可能不支持多个并发SSH连接,这可能导致不可预见的错误。
-
性能考虑:对于高并发场景,建议使用轻量级的处理函数而非复杂的对象实例化。
最佳实践建议
-
对于简单用例,优先使用工厂方法模式,代码更简洁。
-
对于需要复杂状态管理或细粒度控制的场景,使用自定义SSHServer类。
-
明确区分不同类型的会话处理逻辑,避免功能冲突。
-
在生产环境中,建议添加详细的日志记录,以便调试会话处理流程。
通过合理配置AsyncSSH的会话处理机制,开发者可以轻松实现同时支持SFTP和Shell会话的SSH服务器,满足各种应用场景的需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00