Rosie 的安装和配置教程
项目基础介绍
Rosie 是一个用于创建遵循 Clean Architecture 原则的 Android 应用程序的框架。它将应用程序分为三个层次:视图(View)、领域(Domain)和仓库(Repository),为每个层次提供了大量的类,使得定义和分离这些关注点变得更加容易。
主要编程语言
Rosie 使用 Java 作为主要的编程语言。
项目使用的关键技术和框架
- Model-View-Presenter (MVP) 模式:用于实现应用程序的表示逻辑。
- Clean Architecture:一种软件设计哲学,旨在分离应用程序的不同部分,以提高可维护性和可测试性。
- Dagger:一个依赖注入框架,用于解决依赖倒置。
- Repository 模式:为数据的检索和存储提供抽象。
- 命令模式:用于定义和执行应用程序的使用案例。
准备工作
在开始安装和配置 Rosie 之前,请确保您已经安装了以下工具:
- Android Studio
- JDK 1.8 或更高版本
- Gradle
安装步骤
-
克隆项目仓库 打开终端(或命令提示符),然后使用以下命令克隆 Rosie 项目仓库:
git clone https://github.com/Karumi/Rosie.git -
导入项目到 Android Studio 打开 Android Studio,选择 "Open an existing Android Studio project" 并导航到克隆的项目目录。
-
配置项目依赖项 在项目根目录下,找到
build.gradle文件,并确保其中的依赖项与您项目的其他部分兼容。 -
设置 Application 类 为了使用 Rosie 提供的依赖注入配置,您需要让您的
Application类继承自RosieApplication。创建一个名为SampleApplication的类,如下所示:public class SampleApplication extends RosieApplication { @Override protected List<Object> getApplicationModules() { return Arrays.asList((Object) new SampleGlobalModule()); } } -
配置 Activity 或 Fragment 让您的
Activity或Fragment继承自RosieActivity或RosieFragment。例如,对于Activity:public class SampleActivity extends RosieActivity { @Override protected int getLayoutId() { return R.layout.sample_activity; } } -
定义和使用 Presenter 创建一个继承自
RosiePresenter的Presenter类,并在您的Activity或Fragment中使用它。例如:public class SamplePresenter extends RosiePresenter<SamplePresenter.View> { public interface View extends RosiePresenter.View { void foo(); } // 定义 Presenter 的逻辑 } -
运行项目 在 Android Studio 中,选择您的设备和运行项目。如果一切配置正确,应用程序应该会启动并运行。
以上就是 Rosie 的安装和配置指南。按照上述步骤操作,您应该能够成功设置并运行一个基于 Rosie 框架的 Android 应用程序。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00