开源项目最佳实践:基于Calibrated Backprojection Network的深度完成
2025-05-27 05:11:57作者:裘旻烁
1. 项目介绍
Calibrated Backprojection Network(KBNet)是一个基于Python和PyTorch的开源项目,致力于解决从稀疏点云到稠密深度图的深度完成问题。该网络通过学习稀疏到稠密的池化模块(S2D)和校准反投影层来提高深度图的稠密度和准确性,具有良好的泛化能力,适用于不同的传感器平台。
2. 项目快速启动
首先,确保您的系统中已安装Python和pip。然后,按照以下步骤进行快速启动:
# 创建并激活虚拟环境
virtualenv -p /usr/bin/python3.7 kbnet-py37env
source kbnet-py37env/bin/activate
# 安装依赖
pip install opencv-python scipy scikit-learn scikit-image matplotlib gdown numpy gast Pillow pyyaml
# 根据您的CUDA版本安装PyTorch和torchvision
# 对于CUDA 10.1
pip install torch==1.3.0 torchvision==0.4.1 tensorboard==2.3.0
# 对于CUDA 11.1
pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
pip install tensorboard==2.3.0
接着,配置数据集:
# 创建数据文件夹并链接数据集
mkdir data
ln -s /path/to/kitti_raw_data data/
ln -s /path/to/kitti_depth_completion data/
ln -s /path/to/void_release data/
ln -s /path/to/nyu_v2 data/
如果数据集尚未下载,可以使用以下脚本来下载:
bash bash/setup_dataset_kitti.sh
bash bash/setup_dataset_nyu_v2.sh
bash bash/setup_dataset_nyu_v2_raw.sh
bash bash/setup_dataset_void.sh
3. 应用案例和最佳实践
- 数据预处理:确保所有数据集格式正确,并且已经过预处理,以便KBNet可以使用它们进行训练和测试。
- 模型训练:在准备好数据集之后,可以使用项目提供的训练脚本开始训练KBNet。注意调整学习率和批次大小等超参数以获得最佳性能。
- 模型评估:使用测试集评估模型的性能,确保其泛化能力强,并且可以在不同环境下工作。
- 模型部署:在真实世界应用中部署模型时,请确保已经根据实际环境调整了校准矩阵,以获得最佳的深度完成效果。
4. 典型生态项目
- 数据集项目:例如KITTI、NYUv2和VOID,这些项目提供了丰富的数据集,用于训练和评估深度完成算法。
- 相关算法库:例如Open3D,它提供了处理3D数据的工具,可以帮助进一步分析KBNet的输出结果。
- 深度学习框架:例如PyTorch和TensorFlow,它们提供了构建和训练复杂深度学习模型的工具。
以上就是基于Calibrated Backprojection Network的开源项目最佳实践,希望对您的项目开发有所帮助。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
235
267
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33