AIMET 2.7.0发布:PyTorch OmniQuant实验性支持与多项优化
AIMET(AI Model Efficiency Toolkit)是由高通创新中心开发的开源工具库,专注于为深度学习模型提供量化、压缩和优化功能。该项目支持TensorFlow、PyTorch和ONNX等多种深度学习框架,帮助开发者在保持模型精度的同时提升推理效率。最新发布的2.7.0版本带来了一些值得关注的新特性和改进。
PyTorch OmniQuant实验性支持
2.7.0版本中最引人注目的新特性是对OmniQuant PTQ(Post-Training Quantization)技术的实验性支持。OmniQuant是一种基于论文《OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models》提出的后训练量化方法,特别针对大型语言模型设计。
该技术目前支持Llama和Qwen2模型家族,通过全方位的校准策略,能够在保持模型性能的同时实现更高效的量化。OmniQuant的核心思想是通过多方向的校准方法,包括权重、激活值等多个维度的联合优化,来减少量化带来的精度损失。
对于研究人员和工程师来说,这一特性为大型语言模型的部署提供了新的量化选择,特别是在资源受限的边缘设备上运行这些模型时,OmniQuant可能带来显著的性能提升。
ONNX相关改进
在ONNX支持方面,2.7.0版本进行了几项重要的优化:
-
依赖项精简:移除了DlCompression、DlEqualization、OpenCV和zlib等依赖项,使得库更加轻量化,减少了潜在的环境冲突问题。
-
编码加载增强:现在支持为缺失的量化器加载编码信息,提高了模型的兼容性和灵活性。同时,在加载编码时会正确设置张量量化器的位宽,确保量化参数的正确应用。
这些改进使得ONNX模型的量化过程更加稳定可靠,特别是在处理复杂模型或迁移已有量化模型时,开发者将获得更好的体验。
PyTorch相关优化
PyTorch方面除了新增的OmniQuant支持外,还包含以下改进:
-
依赖项精简:与ONNX类似,PyTorch部分也移除了不必要的依赖项,保持代码库的简洁性。
-
ONNX QDQ导出增强:现在能够正确导出数据移动操作的编码信息,使得量化感知训练(QAT)后的模型能够更完整地转换为ONNX的QDQ(Quantize-Dequantize)格式。
-
AdaScale实验性功能改进:
- 增加了对Conv2D层在块内更新的支持,扩展了该技术的应用范围
- API更新为接受迭代次数(num_iterations)而非训练轮次(num_epochs),提供了更灵活的训练控制
AdaScale是一种自适应缩放技术,用于改善量化模型的精度,这些改进使得该功能更加实用和易用。
总结
AIMET 2.7.0版本虽然是一个小版本更新,但带来了实用的新特性和多项优化。特别是对OmniQuant的实验性支持,为大型语言模型的量化提供了新的可能性。同时,依赖项的精简和各项功能改进,使得工具库更加稳定和易用。
对于关注模型效率的开发者来说,这个版本值得尝试,特别是那些需要在资源受限环境中部署Llama或Qwen2等大型语言模型的项目。随着AIMET的持续发展,它为深度学习模型的优化和部署提供了越来越强大的工具支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00