Kepler项目v0.0.7版本发布:功耗监控能力全面升级
Kepler是一个开源的Kubernetes原生功耗监控工具,它通过eBPF技术实时采集系统和容器的能耗数据,帮助用户了解工作负载的能源消耗情况。本次发布的v0.0.7版本在功耗监控能力上做了重要改进,特别是针对虚拟化环境的支持有了显著提升。
核心功能增强
虚拟化环境功耗监控支持
新版本增加了对虚拟机功耗监控的支持,这是一个关键性的功能扩展。在云原生环境中,许多工作负载运行在虚拟机内部,传统方法难以准确获取这些虚拟化工作负载的能耗数据。Kepler现在能够穿透虚拟化层,直接监控虚拟机内部的功耗情况,为云环境提供了更全面的能耗可见性。
这一功能的实现基于现代处理器提供的硬件性能计数器(PMC)和运行时代码分析技术,即使在虚拟化环境中也能保持较低的监控开销。
功耗指标简化与优化
本次版本对功耗指标系统进行了重构,合并了原有的基于区域的功耗指标。这种简化使得指标更加直观,同时减少了监控系统的资源消耗。新的指标系统将不同功耗域的测量值整合为统一的接口,开发者可以更方便地获取系统整体的能耗情况,而不需要关心底层硬件的具体分区细节。
稳定性改进
进程资源监控可靠性提升
新版本修复了关于已终止进程的资源监控问题。在之前的版本中,当进程终止时,监控系统有时会继续尝试采集这些不存在的进程数据,导致资源浪费和潜在的错误。改进后的系统能够智能识别并忽略已终止的进程,提高了监控数据的准确性和系统稳定性。
多socket系统支持增强
针对配备多个CPU插槽的高性能服务器,新版本优化了资源监控逻辑。在多socket系统中,Kepler现在能够更准确地分配和统计跨插槽的计算资源使用情况,为NUMA架构的系统提供了更精确的功耗数据。
文档完善
本次更新还包含了监控导出器相关配置的文档补充,帮助用户更好地理解和使用Kepler的数据导出功能。这些文档详细说明了如何配置Prometheus导出器以及相关的指标解释,降低了用户的使用门槛。
技术价值与应用场景
Kepler v0.0.7版本的这些改进特别适合以下场景:
- 混合云环境下的能耗监控,尤其是包含虚拟化基础设施的环境
- 需要精细化管理大型服务器集群能源使用效率的企业
- 追求绿色计算和可持续发展的技术团队
通过这些增强功能,运维团队可以获得更全面、更准确的能耗数据,为资源调度、容量规划和能效优化提供可靠依据。特别是在当前强调可持续计算和碳足迹管理的背景下,Kepler的这些改进具有重要的实践价值。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00