Protobuf Java与Kotlin库中的类重复问题解析
在Protobuf 4.30.0版本中,Android开发者遇到了一个关于Java和Kotlin库之间类重复的问题。这个问题表现为在同时使用protobuf-java和protobuf-kotlin依赖时,系统检测到了重复的类定义,特别是DescriptorProtos和JavaFeaturesProto相关类。
问题背景
Protobuf作为Google开发的高效数据序列化工具,提供了多种语言支持。在Java生态中,protobuf-java是核心实现,而protobuf-kotlin则是为Kotlin开发者提供的扩展库。理论上,Kotlin库应该依赖于Java库,不应该包含重复的类定义。
问题根源分析
经过深入调查,发现这个问题实际上由来已久,但在4.30.0版本中变得更加明显。根本原因在于构建系统对依赖关系的处理方式:
-
构建配置问题:protobuf-kotlin的构建配置中,
deploy_env参数只列出了核心目标(core),而没有包含lite目标。这导致构建系统无法正确识别和排除lite相关的符号。 -
历史遗留问题:在4.29.x版本中,虽然也存在类似问题,但仅限于枚举验证器类(enum verifiers),因此没有引起广泛注意。实际上,那时就已经存在ODR(单一定义规则)违规的情况。
-
4.30.0版本的变化:在这个版本中,开发团队修复了一个问题,将DescriptorProtos和JavaFeaturesProto完全移到了lite实现中。这一改动使得原本隐藏的问题浮出水面,导致了更明显的类重复冲突。
技术细节
问题的技术本质在于:
- Protobuf的Java实现分为核心(core)和精简(lite)两个版本
- Kotlin扩展库应该只包含Kotlin特有的扩展,而不应该重复Java库中的类
- 构建系统需要明确知道哪些类应该被排除在Kotlin库之外
- 当前的构建配置没有正确处理lite目标中的类排除
解决方案
解决这个问题的正确方法是修改构建配置,将lite目标添加到deploy_env参数中。这样构建系统就能正确识别并排除lite相关的符号,避免它们被包含在Kotlin库中。
对于开发者来说,临时的解决方案可以是:
- 只使用protobuf-java依赖
- 或者等待官方发布修复后的版本
经验教训
这个问题给我们的启示是:
- 构建系统的依赖排除配置需要全面考虑所有相关目标
- 看似微小的构建配置变化可能会在后续版本中引发更大的问题
- 跨语言扩展库的构建需要特别注意避免核心类的重复
- 在架构调整时(如将类移动到不同模块)需要全面评估对依赖关系的影响
总结
Protobuf Java与Kotlin库之间的类重复问题揭示了构建系统配置的重要性。通过正确配置deploy_env参数,可以确保Kotlin扩展库只包含必要的扩展内容,而不重复Java库中的核心类定义。这个问题也提醒我们在进行架构调整时需要全面考虑对依赖关系的影响,特别是在跨语言支持的情况下。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00