MESA 开源项目使用手册
2024-09-26 18:45:09作者:龚格成
项目概述
MESA 是一个基于元学习的集成学习框架,专为解决类别不平衡的学习问题设计(NeurIPS'2020)。它通过设计一种元知识驱动的采样策略来迭代地重抽样训练集,从而得到多个分类器,并形成一个级联的集成模型。该项目强调了模型的通用性、数据效率和性能优化。
项目目录结构及介绍
下面是 MESA 项目的典型目录结构及其内容简介:
.
├── baselines # 基线方法相关代码
├── data # 数据集处理相关文件
├── sac_src # 可能与Soft Actor-Critic相关,如果涉及强化学习部分
├── all-contributorsrc # 贡献者信息
├── .gitignore # 忽略版本控制的文件列表
├── LICENSE # 许可证文件
└── README.md # 项目说明文档
├── arguments.py # 程序参数定义文件
├── environment.py # 环境配置相关的Python脚本
├── main.py # 主入口文件,用于运行整个流程
├── mesa-example.ipynb # 示例Notebook,展示如何使用MESA
├── mesa.py # 核心功能实现,包括MESA框架的逻辑
├── requirements.txt # 项目依赖库清单
└── utils.py # 辅助函数集合
- baselines: 包含基础或对比方法的实现。
- data: 存放数据处理和加载的代码或数据预处理脚本。
- sac_src: 若项目结合了强化学习元素,则可能存放Soft Actor-Critic算法的相关代码。
- main.py: 应用程序的主要执行文件,通常用于初始化、设置参数并运行实验。
- mesa-example.ipynb: Jupyter Notebook形式的示例,帮助用户快速上手。
- mesa.py: 核心MESA框架代码,包括元学习和集成学习的核心逻辑。
- requirements.txt: 列出了项目所需的第三方库及其版本。
项目启动文件介绍
主启动文件:main.py
这是项目的入口点,允许用户通过命令行参数配置和启动MESA。用户可以通过调整这些参数来选择不同的数据集、基学习器、元学习策略等。例如,你可以通过以下命令运行一个示例:
python main.py --dataset Mammo --meta_verbose 10 --update_steps 1000
这将使用Mammo数据集,并在元训练过程中以一定的频率输出日志。
配置文件介绍
虽然直接的“配置文件”在这个描述中没有明确提到,但MESA的配置是通过命令行参数完成的。参数设定在main.py或通过调用时指定,如使用parser.parse_args()来解析。requirements.txt可以视为一种特定形式的配置,指示了项目运行所需的软件环境。
参数配置举例
- 使用
--dataset选择不同的数据集。 --base_estimator指定基础分类器,默认可能是决策树。- 其他如
--meta_verbose,--update_steps等控制元学习过程中的输出频率和更新步数。
为了更细致的配置或环境管理,用户可能需自定义环境变量或修改代码内默认设置。然而,更推荐的方式是通过命令行提供参数或使用环境配置工具,根据实际需求定制化项目运行的每一步。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178