VictoriaMetrics中VMAgent高可用部署时的指标去重问题解析
2025-05-16 00:52:24作者:舒璇辛Bertina
在VictoriaMetrics监控系统中,VMAgent作为数据采集组件支持高可用(HA)部署模式。然而在实际生产环境中,用户经常会遇到指标重复的问题,特别是在Kubernetes集群中部署多个VMAgent实例时。本文将深入分析这一问题的成因及解决方案。
问题现象
当用户使用Helm chart部署VictoriaMetrics集群并配置VMAgent高可用时,即使设置了以下关键参数:
- 副本数(replicaCount)为2
- 分片数(shardCount)为2
- 去重参数(dedup.minScrapeInterval)为10秒
仍会观察到监控指标出现重复。典型表现为:
- 相同指标出现两条时间序列数据
- 指标值出现翻倍现象(如实际55个Pod却显示110个)
- 告警系统误报资源超限
根本原因分析
经过深入排查,发现问题的根源在于多层次的指标采集架构:
-
VMAgent层面:虽然正确配置了分片(sharding),两个VMAgent实例确实分担了采集任务,但采集的目标服务本身存在冗余。
-
kube-state-metrics层面:部署了两个KSM实例,且未启用水平分片功能。这两个实例会暴露完全相同的指标数据,导致:
- 每个KSM实例都被两个VMAgent采集
- 相同的指标被不同KSM实例重复生成
- VictoriaMetrics服务端将这些视为不同的时间序列(因为instance标签不同)
-
去重机制误解:VictoriaMetrics的去重功能仅针对完全相同的指标(包括所有标签),而不同采集源产生的相同指标(instance标签不同)会被视为不同的时间序列。
解决方案与实践建议
针对这一问题,我们提供以下解决方案:
方案一:精简KSM部署(推荐)
- 将kube-state-metrics的副本数缩减为1
- 优点:实现简单,资源消耗低
- 缺点:牺牲了KSM组件的高可用性
方案二:启用KSM分片功能
- 为kube-state-metrics配置分片参数:
args: - --shard=0 # 第一个实例设为0 - --total-shards=2
- 第二个KSM实例配置为:
args: - --shard=1 # 第二个实例设为1 - --total-shards=2
- 优点:保持KSM高可用
- 缺点:配置复杂度增加,需要确保分片均匀
方案三:指标后处理
- 使用VictoriaMetrics的聚合函数处理重复指标:
sum without(instance)(metric_name)
- 优点:无需修改部署架构
- 缺点:增加查询复杂度,不能从根本上减少存储压力
最佳实践建议
-
监控架构设计原则:
- 保持采集链路的简洁性
- 避免在多个层级引入冗余
- 优先考虑上游组件的精简部署
-
VMAgent配置要点:
- 确保
shardCount
与replicaCount
合理配比 - 使用Pod反亲和性确保实例分散在不同节点
- 合理设置
dedup.minScrapeInterval
参数
- 确保
-
KSM部署建议:
- 生产环境建议采用方案二的分片模式
- 测试环境可采用单实例部署
- 定期检查KSM指标是否重复
通过理解VictoriaMetrics的去重机制和Kubernetes监控组件的协作原理,可以有效避免指标重复问题,构建更加精准可靠的监控系统。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8