VictoriaMetrics中VMAgent高可用部署时的指标去重问题解析
2025-05-16 02:10:17作者:舒璇辛Bertina
在VictoriaMetrics监控系统中,VMAgent作为数据采集组件支持高可用(HA)部署模式。然而在实际生产环境中,用户经常会遇到指标重复的问题,特别是在Kubernetes集群中部署多个VMAgent实例时。本文将深入分析这一问题的成因及解决方案。
问题现象
当用户使用Helm chart部署VictoriaMetrics集群并配置VMAgent高可用时,即使设置了以下关键参数:
- 副本数(replicaCount)为2
 - 分片数(shardCount)为2
 - 去重参数(dedup.minScrapeInterval)为10秒
 
仍会观察到监控指标出现重复。典型表现为:
- 相同指标出现两条时间序列数据
 - 指标值出现翻倍现象(如实际55个Pod却显示110个)
 - 告警系统误报资源超限
 
根本原因分析
经过深入排查,发现问题的根源在于多层次的指标采集架构:
- 
VMAgent层面:虽然正确配置了分片(sharding),两个VMAgent实例确实分担了采集任务,但采集的目标服务本身存在冗余。
 - 
kube-state-metrics层面:部署了两个KSM实例,且未启用水平分片功能。这两个实例会暴露完全相同的指标数据,导致:
- 每个KSM实例都被两个VMAgent采集
 - 相同的指标被不同KSM实例重复生成
 - VictoriaMetrics服务端将这些视为不同的时间序列(因为instance标签不同)
 
 - 
去重机制误解:VictoriaMetrics的去重功能仅针对完全相同的指标(包括所有标签),而不同采集源产生的相同指标(instance标签不同)会被视为不同的时间序列。
 
解决方案与实践建议
针对这一问题,我们提供以下解决方案:
方案一:精简KSM部署(推荐)
- 将kube-state-metrics的副本数缩减为1
 - 优点:实现简单,资源消耗低
 - 缺点:牺牲了KSM组件的高可用性
 
方案二:启用KSM分片功能
- 为kube-state-metrics配置分片参数:
args: - --shard=0 # 第一个实例设为0 - --total-shards=2 - 第二个KSM实例配置为:
args: - --shard=1 # 第二个实例设为1 - --total-shards=2 - 优点:保持KSM高可用
 - 缺点:配置复杂度增加,需要确保分片均匀
 
方案三:指标后处理
- 使用VictoriaMetrics的聚合函数处理重复指标:
sum without(instance)(metric_name) - 优点:无需修改部署架构
 - 缺点:增加查询复杂度,不能从根本上减少存储压力
 
最佳实践建议
- 
监控架构设计原则:
- 保持采集链路的简洁性
 - 避免在多个层级引入冗余
 - 优先考虑上游组件的精简部署
 
 - 
VMAgent配置要点:
- 确保
shardCount与replicaCount合理配比 - 使用Pod反亲和性确保实例分散在不同节点
 - 合理设置
dedup.minScrapeInterval参数 
 - 确保
 - 
KSM部署建议:
- 生产环境建议采用方案二的分片模式
 - 测试环境可采用单实例部署
 - 定期检查KSM指标是否重复
 
 
通过理解VictoriaMetrics的去重机制和Kubernetes监控组件的协作原理,可以有效避免指标重复问题,构建更加精准可靠的监控系统。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444