TS-CAM 项目使用教程
2024-09-18 13:09:01作者:昌雅子Ethen
项目介绍
TS-CAM(Token Semantic Coupled Attention Map)是一个用于弱监督对象定位的开源项目。该项目基于Deit(Vision Transformer),通过将视觉图像变换器的注意力图与语义感知图相结合,生成准确的定位图。TS-CAM的主要目标是提供一种可行的方法,利用语义感知令牌和语义无关的注意力图,从而在弱监督学习中实现更好的对象定位。
项目快速启动
1. 克隆项目仓库
首先,你需要将TS-CAM项目克隆到本地:
git clone https://github.com/vasgaowei/TS-CAM.git
2. 安装依赖
进入项目目录并安装所需的Python依赖:
cd TS-CAM
pip install -r requirements.txt
3. 数据准备
TS-CAM支持CUB-200-2011和ImageNet_ILSVRC2012数据集。你需要下载并解压这些数据集,并将它们放置在项目的data/目录下。
4. 训练模型
使用以下命令在CUB-200-2011数据集上训练TS-CAM模型:
bash train_val_cub.sh [GPU_ID] [NET] [NET_SCALE] [SIZE]
例如:
bash train_val_cub.sh 0 deit small 224
5. 模型评估
训练完成后,你可以使用以下命令在CUB-200-2011数据集上评估模型:
bash val_cub.sh [GPU_ID] [NET] [NET_SCALE] [SIZE] [MODEL_PATH]
例如:
bash val_cub.sh 0 deit small 224 /path/to/your/model.pth
应用案例和最佳实践
应用案例
TS-CAM在多个数据集上展示了其优越的性能,特别是在CUB-200-2011和ImageNet_ILSVRC2012数据集上。以下是一些应用案例:
- 鸟类分类与定位:在CUB-200-2011数据集上,TS-CAM能够准确地定位鸟类的关键部位,如头部、翅膀等。
- 通用对象定位:在ImageNet_ILSVRC2012数据集上,TS-CAM展示了其在不同类别对象上的广泛适用性。
最佳实践
- 数据增强:在训练过程中使用数据增强技术(如随机裁剪、翻转等)可以显著提高模型的泛化能力。
- 模型微调:根据具体任务的需求,可以对预训练的TS-CAM模型进行微调,以获得更好的性能。
- 多GPU训练:在资源允许的情况下,使用多GPU进行训练可以加速模型的训练过程。
典型生态项目
TS-CAM作为一个开源项目,可以与其他计算机视觉项目结合使用,形成更强大的解决方案。以下是一些典型的生态项目:
- Deit:TS-CAM基于Deit模型,Deit是一个基于Transformer的视觉模型,广泛应用于图像分类任务。
- PyTorch:TS-CAM使用PyTorch作为深度学习框架,PyTorch提供了丰富的工具和库,方便模型的开发和调试。
- timm:timm是一个PyTorch图像模型库,提供了多种预训练模型,可以与TS-CAM结合使用,进一步提升模型的性能。
通过结合这些生态项目,TS-CAM可以在更广泛的计算机视觉任务中发挥作用,如目标检测、图像分割等。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30