TS-CAM 项目使用教程
2024-09-18 12:03:29作者:昌雅子Ethen
项目介绍
TS-CAM(Token Semantic Coupled Attention Map)是一个用于弱监督对象定位的开源项目。该项目基于Deit(Vision Transformer),通过将视觉图像变换器的注意力图与语义感知图相结合,生成准确的定位图。TS-CAM的主要目标是提供一种可行的方法,利用语义感知令牌和语义无关的注意力图,从而在弱监督学习中实现更好的对象定位。
项目快速启动
1. 克隆项目仓库
首先,你需要将TS-CAM项目克隆到本地:
git clone https://github.com/vasgaowei/TS-CAM.git
2. 安装依赖
进入项目目录并安装所需的Python依赖:
cd TS-CAM
pip install -r requirements.txt
3. 数据准备
TS-CAM支持CUB-200-2011和ImageNet_ILSVRC2012数据集。你需要下载并解压这些数据集,并将它们放置在项目的data/
目录下。
4. 训练模型
使用以下命令在CUB-200-2011数据集上训练TS-CAM模型:
bash train_val_cub.sh [GPU_ID] [NET] [NET_SCALE] [SIZE]
例如:
bash train_val_cub.sh 0 deit small 224
5. 模型评估
训练完成后,你可以使用以下命令在CUB-200-2011数据集上评估模型:
bash val_cub.sh [GPU_ID] [NET] [NET_SCALE] [SIZE] [MODEL_PATH]
例如:
bash val_cub.sh 0 deit small 224 /path/to/your/model.pth
应用案例和最佳实践
应用案例
TS-CAM在多个数据集上展示了其优越的性能,特别是在CUB-200-2011和ImageNet_ILSVRC2012数据集上。以下是一些应用案例:
- 鸟类分类与定位:在CUB-200-2011数据集上,TS-CAM能够准确地定位鸟类的关键部位,如头部、翅膀等。
- 通用对象定位:在ImageNet_ILSVRC2012数据集上,TS-CAM展示了其在不同类别对象上的广泛适用性。
最佳实践
- 数据增强:在训练过程中使用数据增强技术(如随机裁剪、翻转等)可以显著提高模型的泛化能力。
- 模型微调:根据具体任务的需求,可以对预训练的TS-CAM模型进行微调,以获得更好的性能。
- 多GPU训练:在资源允许的情况下,使用多GPU进行训练可以加速模型的训练过程。
典型生态项目
TS-CAM作为一个开源项目,可以与其他计算机视觉项目结合使用,形成更强大的解决方案。以下是一些典型的生态项目:
- Deit:TS-CAM基于Deit模型,Deit是一个基于Transformer的视觉模型,广泛应用于图像分类任务。
- PyTorch:TS-CAM使用PyTorch作为深度学习框架,PyTorch提供了丰富的工具和库,方便模型的开发和调试。
- timm:timm是一个PyTorch图像模型库,提供了多种预训练模型,可以与TS-CAM结合使用,进一步提升模型的性能。
通过结合这些生态项目,TS-CAM可以在更广泛的计算机视觉任务中发挥作用,如目标检测、图像分割等。
热门项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4