TS-CAM:引领弱监督目标定位的新时代
2024-09-20 13:50:03作者:邓越浪Henry
项目介绍
TS-CAM(Token Semantic Coupled Attention Map)是一款基于视觉图像Transformer的弱监督目标定位工具,其核心思想是通过结合视觉注意力图与语义感知图,生成精确的定位图。该项目已在ICCV 2021上作为海报论文被接受,并提供了PyTorch训练代码、评估代码、预训练模型以及用于更多可视化的Jupyter Notebook。
项目技术分析
TS-CAM的核心技术在于其独特的注意力机制。它基于Deit模型,通过将视觉Transformer的注意力图与语义感知图相结合,生成Token Semantic Coupled Attention Map(TS-CAM)。这种结合不仅提高了目标定位的准确性,还增强了模型的泛化能力。此外,TS-CAM还支持使用更强大的视觉Transformer模型,如Conformer,进一步提升了性能。
项目及技术应用场景
TS-CAM在多个领域具有广泛的应用前景,特别是在需要高精度目标定位的场景中。例如:
- 医学影像分析:在医学影像中,准确的目标定位对于疾病诊断至关重要。TS-CAM可以帮助医生更快速、准确地定位病灶。
- 自动驾驶:在自动驾驶系统中,目标定位的准确性直接影响到车辆的安全性。TS-CAM可以用于实时检测和定位道路上的障碍物。
- 智能监控:在智能监控系统中,TS-CAM可以用于实时检测和定位监控画面中的异常行为或目标。
项目特点
- 高精度定位:TS-CAM通过结合视觉注意力图与语义感知图,实现了高精度的目标定位,显著优于传统的弱监督方法。
- 支持多种Transformer模型:TS-CAM不仅支持Deit模型,还支持更强大的Conformer模型,用户可以根据需求选择合适的模型。
- 丰富的预训练模型:项目提供了在CUB-200-2011和ImageNet_ILSVRC2012数据集上训练的预训练模型,用户可以直接使用或进行微调。
- 易于使用:项目提供了详细的安装和使用说明,用户可以轻松上手。此外,还提供了Jupyter Notebook用于可视化,帮助用户更好地理解模型的工作原理。
结语
TS-CAM作为一款创新的弱监督目标定位工具,不仅在技术上取得了显著的突破,还具有广泛的应用前景。无论你是研究者、开发者还是行业从业者,TS-CAM都值得你一试。快来体验TS-CAM带来的高精度目标定位吧!
项目地址: TS-CAM GitHub
联系我们: 如有任何问题,欢迎通过以下邮箱联系我们:
引用: 如果你在论文中使用了TS-CAM,请引用以下内容:
@InProceedings{Gao_2021_ICCV,
author = {Gao, Wei and Wan, Fang and Pan, Xingjia and Peng, Zhiliang and Tian, Qi and Han, Zhenjun and Zhou, Bolei and Ye, Qixiang},
title = {TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {2886-2895}
}
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C041
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869