TS-CAM:引领弱监督目标定位的新时代
2024-09-20 03:10:28作者:邓越浪Henry
项目介绍
TS-CAM(Token Semantic Coupled Attention Map)是一款基于视觉图像Transformer的弱监督目标定位工具,其核心思想是通过结合视觉注意力图与语义感知图,生成精确的定位图。该项目已在ICCV 2021上作为海报论文被接受,并提供了PyTorch训练代码、评估代码、预训练模型以及用于更多可视化的Jupyter Notebook。
项目技术分析
TS-CAM的核心技术在于其独特的注意力机制。它基于Deit模型,通过将视觉Transformer的注意力图与语义感知图相结合,生成Token Semantic Coupled Attention Map(TS-CAM)。这种结合不仅提高了目标定位的准确性,还增强了模型的泛化能力。此外,TS-CAM还支持使用更强大的视觉Transformer模型,如Conformer,进一步提升了性能。
项目及技术应用场景
TS-CAM在多个领域具有广泛的应用前景,特别是在需要高精度目标定位的场景中。例如:
- 医学影像分析:在医学影像中,准确的目标定位对于疾病诊断至关重要。TS-CAM可以帮助医生更快速、准确地定位病灶。
- 自动驾驶:在自动驾驶系统中,目标定位的准确性直接影响到车辆的安全性。TS-CAM可以用于实时检测和定位道路上的障碍物。
- 智能监控:在智能监控系统中,TS-CAM可以用于实时检测和定位监控画面中的异常行为或目标。
项目特点
- 高精度定位:TS-CAM通过结合视觉注意力图与语义感知图,实现了高精度的目标定位,显著优于传统的弱监督方法。
- 支持多种Transformer模型:TS-CAM不仅支持Deit模型,还支持更强大的Conformer模型,用户可以根据需求选择合适的模型。
- 丰富的预训练模型:项目提供了在CUB-200-2011和ImageNet_ILSVRC2012数据集上训练的预训练模型,用户可以直接使用或进行微调。
- 易于使用:项目提供了详细的安装和使用说明,用户可以轻松上手。此外,还提供了Jupyter Notebook用于可视化,帮助用户更好地理解模型的工作原理。
结语
TS-CAM作为一款创新的弱监督目标定位工具,不仅在技术上取得了显著的突破,还具有广泛的应用前景。无论你是研究者、开发者还是行业从业者,TS-CAM都值得你一试。快来体验TS-CAM带来的高精度目标定位吧!
项目地址: TS-CAM GitHub
联系我们: 如有任何问题,欢迎通过以下邮箱联系我们:
引用: 如果你在论文中使用了TS-CAM,请引用以下内容:
@InProceedings{Gao_2021_ICCV,
author = {Gao, Wei and Wan, Fang and Pan, Xingjia and Peng, Zhiliang and Tian, Qi and Han, Zhenjun and Zhou, Bolei and Ye, Qixiang},
title = {TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {2886-2895}
}
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
296
2.64 K
Ascend Extension for PyTorch
Python
128
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
607
190
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
589
127
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
611
仓颉编译器源码及 cjdb 调试工具。
C++
122
482
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
178
62
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
454