在Ragas项目中如何避免使用OpenAI进行测试集生成
2025-05-26 03:34:50作者:范垣楠Rhoda
Ragas是一个用于评估和生成RAG(检索增强生成)系统测试集的开源工具。许多开发者希望使用本地LLM而非OpenAI来生成测试数据,本文将详细介绍实现这一目标的技术方案。
问题背景
Ragas默认使用OpenAI模型进行测试集生成,这会导致两个主要问题:
- 需要OpenAI API密钥
- 无法使用自定义或本地部署的LLM模型
解决方案
正确配置生成器
核心在于正确初始化TestsetGenerator并传入自定义LLM:
from ragas.testset.generator import TestsetGenerator
from langchain_community.llms import YourLocalLLM
from langchain_community.embeddings import YourLocalEmbeddings
# 初始化本地LLM和嵌入模型
generator_llm = YourLocalLLM(model="your-model")
critic_llm = YourLocalLLM(model="your-model")
embeddings = YourLocalEmbeddings()
# 创建测试集生成器
generator = TestsetGenerator.from_langchain(
generator_llm,
critic_llm,
embeddings
)
关键注意事项
-
版本兼容性:确保使用Ragas v0.2beta或更高版本,旧版本存在参数限制
-
完整参数传递:必须同时提供生成器LLM、评判LLM和嵌入模型三个参数
-
模型封装:自定义LLM需要符合Langchain接口规范
常见问题解决
参数错误处理
当遇到"TypeError: takes from 2 to 3 positional arguments but 4 were given"错误时,表明:
- 使用了不兼容的Ragas版本
- 参数传递方式不正确
解决方案是升级Ragas并确保使用关键字参数。
OpenAI错误排查
即使配置了本地LLM仍出现OpenAI错误,通常是因为:
- 环境变量中残留OPENAI_API_KEY
- 默认转换器仍使用OpenAI嵌入
最新版本已修复此问题,建议升级至最新版Ragas。
最佳实践建议
-
版本控制:始终使用Ragas最新稳定版本
-
环境隔离:确保测试环境中没有OpenAI相关环境变量
-
模型测试:先单独验证本地LLM功能正常,再集成到Ragas
-
性能监控:本地LLM可能性能不同,需调整超时等参数
通过以上方法,开发者可以完全基于本地LLM构建RAG评估流程,实现数据隐私和成本控制的双重优势。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137