matplot2tikz 教程:从 matplotlib 到 LaTeX 的平滑过渡
1. 项目介绍
matplot2tikz 是一个 Python 工具,用于将 matplotlib 生成的图形转换为 TikZ/PGFplots 格式,以便无缝集成到 LaTeX 或 ConTeXt 文档中。TikZ/PGFplots 是基于 TeX 的库,可以描述图形的坐标轴、数据等,因此 matplot2tikz 的输出比原始 TikZ 输出更易于理解、编辑和保留更多信息。
2. 项目快速启动
安装
首先,需要安装 Python 和 matplotlib。然后,可以使用 pip 安装 matplot2tikz:
pip install matplot2tikz
创建 matplotlib 图形
使用 matplotlib 创建图形,例如:
import matplotlib.pyplot as plt
import numpy as np
t = np.arange(0.0, 2.0, 0.1)
s = np.sin(2 * np.pi * t)
s2 = np.cos(2 * np.pi * t)
plt.plot(t, s, 'o-', lw=4.1)
plt.plot(t, s2, 'o-', lw=4.1)
plt.xlabel('时间 (s)')
plt.ylabel('电压 (mV)')
plt.title('简单图形')
plt.grid(True)
转换为 TikZ 格式
在 matplotlib 图形上使用 matplot2tikz 的 save 函数将其转换为 TikZ 格式:
import matplot2tikz
matplot2tikz.save('mytikz.tex')
这将生成一个名为 mytikz.tex 的 TikZ 文件。
集成到 LaTeX
将生成的 TikZ 文件内容插入 LaTeX 文档中。确保在文档头部包含 PGFPlots 和适当的 Unicode 支持:
\usepackage[utf8]{inputenc}
\usepackage{pgfplots}
\DeclareUnicodeCharacter{2212}{-}
\usepgfplotslibrary{groupplots,dateplot}
\usetikzlibrary{patterns,shapes.arrows}
\pgfplotsset{compat=newest}
然后,使用 \input 命令将 TikZ 文件内容插入到文档中:
\input{mytikz.tex}
3. 应用案例和最佳实践
清理图形
在导出之前,可以使用 matplot2tikz 的 clean_figure 命令清理图形,例如删除超出坐标轴限制的点、简化曲线和降低点密度:
matplot2tikz.clean_figure()
matplot2tikz.save('mytikz.tex')
使用不同类型的文档
matplot2tikz 可以生成适用于 LaTeX 和 ConTeXt 的输出。可以使用 flavor 参数指定输出类型:
matplot2tikz.save('mytikz.tex', flavor='context')
获取预处理器
可以使用 Flavors 类获取不同类型的文档的预处理器:
import matplot2tikz
matplot2tikz.Flavors.latex.preamble()
matplot2tikz.Flavors.context.preamble()
4. 典型生态项目
matplot2tikz 是一个基于 matplotlib 的项目,因此它适用于任何可以使用 matplotlib 生成图形的场景。例如,可以使用 matplot2tikz 将科学计算、数据分析、机器学习等领域的图形转换为 TikZ 格式,以便在 LaTeX 或 ConTeXt 文档中进行展示和发布。
希望这份教程能够帮助您更好地理解和使用 matplot2tikz。如果您有任何问题或建议,请随时在 GitHub 上提出 issue 或 pull request。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00