Keras自定义模型保存与加载的注意事项
2025-04-29 04:33:03作者:霍妲思
在使用Keras构建深度学习模型时,自定义模型(Model子类)是一种常见的做法。然而,在保存和加载自定义模型时,开发者可能会遇到一些棘手的问题。本文将深入探讨这些问题及其解决方案。
问题背景
当开发者尝试保存并重新加载一个自定义的Keras模型时,可能会遇到以下错误信息:
Functional.__init__() got multiple values for keyword argument 'inputs'Function.__init__() got an unexpected keyword argument 'layers'
这些错误通常出现在Keras 3.5.0及更早版本中,主要原因是模型序列化和反序列化过程中的实现差异。
自定义模型实现分析
让我们先看一个典型的问题案例。开发者创建了一个继承自keras.Model的DummyModel,它包含多个卷积层和池化层:
@keras.saving.register_keras_serializable()
class DummyModel(keras.Model):
    def __init__(self, *, input_shape=(28,28,1), filters=[16,32], activation='relu', **kwargs):
        input_spec = keras.layers.Input(shape=input_shape)
        x = input_spec
        # 构建模型结构
        x = layers.Conv2D(filters[0], 3, activation=activation)(x)
        x = layers.Conv2D(filters[1], 3, activation=activation)(x)
        x = layers.MaxPooling2D(3)(x)
        x = layers.Conv2D(filters[1], 3, activation=activation)(x)
        x = layers.Conv2D(filters[0], 3, activation=activation)(x)
        x = layers.GlobalMaxPooling2D()(x)
        super().__init__(inputs=input_spec, outputs=x, **kwargs)
        
        self.filters = filters
        self.activation = activation
    def get_config(self):
        config = super().get_config()
        config.update({
            "input_shape": self.input_shape[1:],
            "filters": self.filters,
            "activation": self.activation,
        })
        return config
问题根源
在Keras 3.5.0及更早版本中,get_config()方法会返回整个计算图的表示,包括所有层的配置信息。这导致在模型反序列化时出现冲突:
- 当调用
super().get_config()时,父类会返回完整的模型结构配置 - 开发者又添加了自定义配置项,导致配置信息冗余
 - 在加载模型时,Keras无法正确处理这种混合配置
 
解决方案
对于Keras 3.5.0及更早版本
在旧版本中,需要完全重写get_config()方法,避免调用父类方法:
def get_config(self):
    return {
        "name": self.name,
        "input_shape": self.input_shape[1:],
        "filters": self.filters,
        "activation": self.activation,
    }
同时,必须实现from_config类方法:
@classmethod
def from_config(cls, config):
    return cls(**config)
对于Keras 3.8.0及更新版本
新版本已经修复了这个问题,开发者可以安全地调用super().get_config()并添加自定义配置项,如最初的代码示例所示。
最佳实践
无论使用哪个版本的Keras,以下实践都能确保自定义模型的正确序列化:
- 始终使用
@keras.saving.register_keras_serializable()装饰器注册自定义模型 - 明确定义
get_config()方法,返回所有必要的配置信息 - 实现
from_config类方法,确保能正确重建模型 - 在保存模型前,先测试模型的保存和加载流程
 - 保持Keras版本的一致性,避免在不同环境中使用不同版本
 
总结
Keras自定义模型的保存和加载是一个需要特别注意的功能。理解Keras内部如何处理模型配置对于构建可靠的自定义模型至关重要。随着Keras的发展,这些问题正在逐步解决,但了解其背后的机制仍然有助于开发者更好地使用这个强大的深度学习框架。
对于生产环境,建议使用较新的Keras版本(3.8.0+),以获得更好的开发体验和更稳定的功能支持。如果必须使用旧版本,则需要按照本文介绍的解决方案进行调整。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446