Keras自定义模型保存与加载的注意事项
2025-04-29 14:10:16作者:霍妲思
在使用Keras构建深度学习模型时,自定义模型(Model子类)是一种常见的做法。然而,在保存和加载自定义模型时,开发者可能会遇到一些棘手的问题。本文将深入探讨这些问题及其解决方案。
问题背景
当开发者尝试保存并重新加载一个自定义的Keras模型时,可能会遇到以下错误信息:
Functional.__init__() got multiple values for keyword argument 'inputs'Function.__init__() got an unexpected keyword argument 'layers'
这些错误通常出现在Keras 3.5.0及更早版本中,主要原因是模型序列化和反序列化过程中的实现差异。
自定义模型实现分析
让我们先看一个典型的问题案例。开发者创建了一个继承自keras.Model的DummyModel,它包含多个卷积层和池化层:
@keras.saving.register_keras_serializable()
class DummyModel(keras.Model):
def __init__(self, *, input_shape=(28,28,1), filters=[16,32], activation='relu', **kwargs):
input_spec = keras.layers.Input(shape=input_shape)
x = input_spec
# 构建模型结构
x = layers.Conv2D(filters[0], 3, activation=activation)(x)
x = layers.Conv2D(filters[1], 3, activation=activation)(x)
x = layers.MaxPooling2D(3)(x)
x = layers.Conv2D(filters[1], 3, activation=activation)(x)
x = layers.Conv2D(filters[0], 3, activation=activation)(x)
x = layers.GlobalMaxPooling2D()(x)
super().__init__(inputs=input_spec, outputs=x, **kwargs)
self.filters = filters
self.activation = activation
def get_config(self):
config = super().get_config()
config.update({
"input_shape": self.input_shape[1:],
"filters": self.filters,
"activation": self.activation,
})
return config
问题根源
在Keras 3.5.0及更早版本中,get_config()方法会返回整个计算图的表示,包括所有层的配置信息。这导致在模型反序列化时出现冲突:
- 当调用
super().get_config()时,父类会返回完整的模型结构配置 - 开发者又添加了自定义配置项,导致配置信息冗余
- 在加载模型时,Keras无法正确处理这种混合配置
解决方案
对于Keras 3.5.0及更早版本
在旧版本中,需要完全重写get_config()方法,避免调用父类方法:
def get_config(self):
return {
"name": self.name,
"input_shape": self.input_shape[1:],
"filters": self.filters,
"activation": self.activation,
}
同时,必须实现from_config类方法:
@classmethod
def from_config(cls, config):
return cls(**config)
对于Keras 3.8.0及更新版本
新版本已经修复了这个问题,开发者可以安全地调用super().get_config()并添加自定义配置项,如最初的代码示例所示。
最佳实践
无论使用哪个版本的Keras,以下实践都能确保自定义模型的正确序列化:
- 始终使用
@keras.saving.register_keras_serializable()装饰器注册自定义模型 - 明确定义
get_config()方法,返回所有必要的配置信息 - 实现
from_config类方法,确保能正确重建模型 - 在保存模型前,先测试模型的保存和加载流程
- 保持Keras版本的一致性,避免在不同环境中使用不同版本
总结
Keras自定义模型的保存和加载是一个需要特别注意的功能。理解Keras内部如何处理模型配置对于构建可靠的自定义模型至关重要。随着Keras的发展,这些问题正在逐步解决,但了解其背后的机制仍然有助于开发者更好地使用这个强大的深度学习框架。
对于生产环境,建议使用较新的Keras版本(3.8.0+),以获得更好的开发体验和更稳定的功能支持。如果必须使用旧版本,则需要按照本文介绍的解决方案进行调整。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1