MemShellParty v1.7.0 版本发布:Java 内存马生成工具的重大升级
MemShellParty 是一个专注于 Java 内存马(Memory Shell)生成与研究的开源工具,它能够帮助安全研究人员和渗透测试人员快速生成各种类型的测试 payload。内存马是一种驻留在内存中的代码,通常用于 Web 应用的测试场景,由于其不落地的特性,使得传统安全防护手段难以检测。
核心功能升级
MavenCentral 发布支持
v1.7.0 版本最重要的变化是支持将项目发布到 MavenCentral 仓库。这意味着开发者现在可以通过标准的 Maven 或 Gradle 依赖直接引入 MemShellParty 的功能,而无需手动下载和集成。这一改进极大地简化了工具的集成流程,使得在自动化安全测试框架中使用 MemShellParty 变得更加便捷。
CC3 和 CC4 反序列化 payload 支持
新版本增加了对 Commons Collections 3(CC3)和 Commons Collections 4(CC4)反序列化 payload 的打包方式支持。这两个库是 Java 生态中广泛使用的工具库,历史上曾多次出现高危反序列化漏洞。通过支持这两种 payload 生成方式,MemShellParty 现在能够覆盖更广泛的实际测试场景。
随机参数生成与默认选项
为了提高生成的 payload 的多样性和独特性,v1.7.0 引入了随机参数生成功能。这一特性可以自动为 payload 生成随机化的参数名称和值,使得每次生成的 payload 都具有一定程度的唯一性。同时,工具还提供了合理的默认选项,简化了初级用户的使用流程。
架构优化与改进
依赖项精简
为了减小最终打包的体积并提高安全性,开发团队做出了以下优化:
- 移除了代码混淆相关的代码,简化了构建流程
- 使用 Jackson 替代 Fastjson 作为 JSON 处理库,不仅减小了体积,还避免了 Fastjson 潜在的安全问题
- 移除了 commons-codec 依赖,进一步精简了打包体积
这些优化使得 boot-1.7.0.jar 的体积得到了有效控制,同时保持了全部核心功能。
模块重构
为了更好地在 MavenCentral 上展示和维护,项目对部分模块进行了重命名。这种重构不仅提高了项目的专业性,也为未来的功能扩展打下了更好的基础。
前端组件升级
项目的前端部分基于 shadcn/ui 构建,v1.7.0 版本中所有 UI 组件代码都得到了升级,这带来了更好的用户体验和界面一致性。
部署与使用
MemShellParty v1.7.0 提供了两种主要的部署方式:
-
Docker 部署:最简单快捷的方式,适合大多数使用场景。通过简单的 docker run 命令即可启动服务。
-
Jar 包直接运行:需要 JDK17 或更高版本,运行时需要添加特定的 JVM 参数以确保兼容性。这种方式适合需要深度定制或集成到现有 Java 环境中的场景。
安全研究价值
MemShellParty 的持续更新不仅为安全测试提供了便利工具,同时也为防御研究提供了重要参考。通过分析工具生成的 payload 特征,安全团队可以更好地理解相关技术的工作原理,进而开发出更有效的检测和防御方案。特别是新增的随机参数生成功能,模拟了高级测试场景,对防御方的检测能力提出了更高要求。
v1.7.0 版本的发布标志着 MemShellParty 工具在专业性、易用性和功能性方面都迈上了一个新台阶,为 Java 应用安全研究领域提供了更加强大的技术支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00