StreamSpeech 开源项目使用教程
2024-09-14 00:57:55作者:盛欣凯Ernestine
1. 项目介绍
StreamSpeech 是一个“All in One”无缝模型,专为离线和同时语音识别、语音翻译和语音合成而设计。该项目通过多任务学习框架,能够同时处理语音识别、语音翻译和语音合成任务,适用于实时通信场景。StreamSpeech 不仅支持离线处理,还支持同时处理,能够在接收语音输入的同时输出目标语音,极大地提升了实时通信的效率和用户体验。
2. 项目快速启动
环境准备
确保你的环境满足以下要求:
- Python == 3.10
- PyTorch == 2.0.1
安装依赖
首先,克隆项目到本地:
git clone https://github.com/ictnlp/StreamSpeech.git
cd StreamSpeech
安装 fairseq 和 SimulEval:
cd fairseq
pip install --editable ./ --no-build-isolation
cd ../SimulEval
pip install --editable ./
模型下载
下载 StreamSpeech 模型和预训练的 HiFi-GAN 声码器:
# 下载 StreamSpeech 模型
# 例如:Fr-En 语言对的离线模型
wget https://huggingface.co/streamspeech/offline/fr-en/pt/model.pt
# 下载 HiFi-GAN 声码器
wget https://huggingface.co/streamspeech/vocoder/hifigan/fr-en/config.json
wget https://huggingface.co/streamspeech/vocoder/hifigan/fr-en/model.pt
数据准备
准备测试数据,格式如下:
# wav_list.txt
/path/to/source_speech1.wav
/path/to/source_speech2.wav
# target.txt
reference_text1
reference_text2
运行推理
使用 SimulEval 进行推理:
export CUDA_VISIBLE_DEVICES=0
ROOT=/path/to/StreamSpeech
PRETRAIN_ROOT=/path/to/pretrain_models
VOCODER_CKPT=$PRETRAIN_ROOT/unit-based_HiFi-GAN_vocoder/mHuBERT_layer11_km1000_en/g_00500000
VOCODER_CFG=$PRETRAIN_ROOT/unit-based_HiFi-GAN_vocoder/mHuBERT_layer11_km1000_en/config.json
LANG=fr
file=streamspeech_simultaneous_$LANG-en_pt
output_dir=$ROOT/res/streamspeech_simultaneous_$LANG-en/simul-s2st
chunk_size=320 #ms
PYTHONPATH=$ROOT/fairseq simuleval --data-bin $ROOT/configs/$LANG-en \
--user-dir $ROOT/researches/ctc_unity --agent-dir $ROOT/agent \
--source example/wav_list.txt --target example/target.txt \
--model-path $file \
--config-yaml config_gcmvn.yaml --multitask-config-yaml config_mtl_asr_st_ctcst.yaml \
--agent $ROOT/agent/speech_to_speech_streamspeech_agent.py \
--vocoder $VOCODER_CKPT --vocoder-cfg $VOCODER_CFG --dur-prediction \
--output $output_dir/chunk_size=$chunk_size \
--source-segment-size $chunk_size \
--quality-metrics ASR_BLEU --target-speech-lang en --latency-metrics AL AP DAL StartOffset EndOffset LAAL ATD NumChunks DiscontinuitySum DiscontinuityAve DiscontinuityNum RTF \
--device gpu --computation-aware \
--output-asr-translation True
3. 应用案例和最佳实践
实时语音翻译
StreamSpeech 可以应用于实时语音翻译场景,例如国际会议、跨国视频通话等。通过 StreamSpeech,用户可以在说话的同时听到翻译后的语音,极大地提升了跨语言交流的效率。
语音助手
在语音助手应用中,StreamSpeech 可以用于实时语音识别和语音合成,提升语音助手的响应速度和用户体验。
教育领域
在教育领域,StreamSpeech 可以用于实时语音翻译和语音合成,帮助学生更好地理解外语课程内容。
4. 典型生态项目
Fairseq
Fairseq 是一个用于序列到序列任务的强大工具包,StreamSpeech 基于 Fairseq 构建,提供了丰富的模型训练和推理功能。
SimulEval
SimulEval 是一个用于评估同时翻译系统的工具包,StreamSpeech 使用 SimulEval 进行模型评估和推理。
HiFi-GAN
HiFi-GAN 是一个高质量的语音合成模型,StreamSpeech 使用 HiFi-GAN 进行语音合成,提供了自然流畅的语音输出。
通过这些生态项目的支持,StreamSpeech 能够提供高效、准确的语音识别、翻译和合成服务。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210