StreamSpeech 开源项目使用教程
2024-09-14 22:26:29作者:盛欣凯Ernestine
1. 项目介绍
StreamSpeech 是一个“All in One”无缝模型,专为离线和同时语音识别、语音翻译和语音合成而设计。该项目通过多任务学习框架,能够同时处理语音识别、语音翻译和语音合成任务,适用于实时通信场景。StreamSpeech 不仅支持离线处理,还支持同时处理,能够在接收语音输入的同时输出目标语音,极大地提升了实时通信的效率和用户体验。
2. 项目快速启动
环境准备
确保你的环境满足以下要求:
- Python == 3.10
- PyTorch == 2.0.1
安装依赖
首先,克隆项目到本地:
git clone https://github.com/ictnlp/StreamSpeech.git
cd StreamSpeech
安装 fairseq 和 SimulEval:
cd fairseq
pip install --editable ./ --no-build-isolation
cd ../SimulEval
pip install --editable ./
模型下载
下载 StreamSpeech 模型和预训练的 HiFi-GAN 声码器:
# 下载 StreamSpeech 模型
# 例如:Fr-En 语言对的离线模型
wget https://huggingface.co/streamspeech/offline/fr-en/pt/model.pt
# 下载 HiFi-GAN 声码器
wget https://huggingface.co/streamspeech/vocoder/hifigan/fr-en/config.json
wget https://huggingface.co/streamspeech/vocoder/hifigan/fr-en/model.pt
数据准备
准备测试数据,格式如下:
# wav_list.txt
/path/to/source_speech1.wav
/path/to/source_speech2.wav
# target.txt
reference_text1
reference_text2
运行推理
使用 SimulEval 进行推理:
export CUDA_VISIBLE_DEVICES=0
ROOT=/path/to/StreamSpeech
PRETRAIN_ROOT=/path/to/pretrain_models
VOCODER_CKPT=$PRETRAIN_ROOT/unit-based_HiFi-GAN_vocoder/mHuBERT_layer11_km1000_en/g_00500000
VOCODER_CFG=$PRETRAIN_ROOT/unit-based_HiFi-GAN_vocoder/mHuBERT_layer11_km1000_en/config.json
LANG=fr
file=streamspeech_simultaneous_$LANG-en_pt
output_dir=$ROOT/res/streamspeech_simultaneous_$LANG-en/simul-s2st
chunk_size=320 #ms
PYTHONPATH=$ROOT/fairseq simuleval --data-bin $ROOT/configs/$LANG-en \
--user-dir $ROOT/researches/ctc_unity --agent-dir $ROOT/agent \
--source example/wav_list.txt --target example/target.txt \
--model-path $file \
--config-yaml config_gcmvn.yaml --multitask-config-yaml config_mtl_asr_st_ctcst.yaml \
--agent $ROOT/agent/speech_to_speech_streamspeech_agent.py \
--vocoder $VOCODER_CKPT --vocoder-cfg $VOCODER_CFG --dur-prediction \
--output $output_dir/chunk_size=$chunk_size \
--source-segment-size $chunk_size \
--quality-metrics ASR_BLEU --target-speech-lang en --latency-metrics AL AP DAL StartOffset EndOffset LAAL ATD NumChunks DiscontinuitySum DiscontinuityAve DiscontinuityNum RTF \
--device gpu --computation-aware \
--output-asr-translation True
3. 应用案例和最佳实践
实时语音翻译
StreamSpeech 可以应用于实时语音翻译场景,例如国际会议、跨国视频通话等。通过 StreamSpeech,用户可以在说话的同时听到翻译后的语音,极大地提升了跨语言交流的效率。
语音助手
在语音助手应用中,StreamSpeech 可以用于实时语音识别和语音合成,提升语音助手的响应速度和用户体验。
教育领域
在教育领域,StreamSpeech 可以用于实时语音翻译和语音合成,帮助学生更好地理解外语课程内容。
4. 典型生态项目
Fairseq
Fairseq 是一个用于序列到序列任务的强大工具包,StreamSpeech 基于 Fairseq 构建,提供了丰富的模型训练和推理功能。
SimulEval
SimulEval 是一个用于评估同时翻译系统的工具包,StreamSpeech 使用 SimulEval 进行模型评估和推理。
HiFi-GAN
HiFi-GAN 是一个高质量的语音合成模型,StreamSpeech 使用 HiFi-GAN 进行语音合成,提供了自然流畅的语音输出。
通过这些生态项目的支持,StreamSpeech 能够提供高效、准确的语音识别、翻译和合成服务。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355