StreamSpeech 开源项目使用教程
2024-09-14 08:22:47作者:盛欣凯Ernestine
1. 项目介绍
StreamSpeech 是一个“All in One”无缝模型,专为离线和同时语音识别、语音翻译和语音合成而设计。该项目通过多任务学习框架,能够同时处理语音识别、语音翻译和语音合成任务,适用于实时通信场景。StreamSpeech 不仅支持离线处理,还支持同时处理,能够在接收语音输入的同时输出目标语音,极大地提升了实时通信的效率和用户体验。
2. 项目快速启动
环境准备
确保你的环境满足以下要求:
- Python == 3.10
- PyTorch == 2.0.1
安装依赖
首先,克隆项目到本地:
git clone https://github.com/ictnlp/StreamSpeech.git
cd StreamSpeech
安装 fairseq 和 SimulEval:
cd fairseq
pip install --editable ./ --no-build-isolation
cd ../SimulEval
pip install --editable ./
模型下载
下载 StreamSpeech 模型和预训练的 HiFi-GAN 声码器:
# 下载 StreamSpeech 模型
# 例如:Fr-En 语言对的离线模型
wget https://huggingface.co/streamspeech/offline/fr-en/pt/model.pt
# 下载 HiFi-GAN 声码器
wget https://huggingface.co/streamspeech/vocoder/hifigan/fr-en/config.json
wget https://huggingface.co/streamspeech/vocoder/hifigan/fr-en/model.pt
数据准备
准备测试数据,格式如下:
# wav_list.txt
/path/to/source_speech1.wav
/path/to/source_speech2.wav
# target.txt
reference_text1
reference_text2
运行推理
使用 SimulEval 进行推理:
export CUDA_VISIBLE_DEVICES=0
ROOT=/path/to/StreamSpeech
PRETRAIN_ROOT=/path/to/pretrain_models
VOCODER_CKPT=$PRETRAIN_ROOT/unit-based_HiFi-GAN_vocoder/mHuBERT_layer11_km1000_en/g_00500000
VOCODER_CFG=$PRETRAIN_ROOT/unit-based_HiFi-GAN_vocoder/mHuBERT_layer11_km1000_en/config.json
LANG=fr
file=streamspeech_simultaneous_$LANG-en_pt
output_dir=$ROOT/res/streamspeech_simultaneous_$LANG-en/simul-s2st
chunk_size=320 #ms
PYTHONPATH=$ROOT/fairseq simuleval --data-bin $ROOT/configs/$LANG-en \
--user-dir $ROOT/researches/ctc_unity --agent-dir $ROOT/agent \
--source example/wav_list.txt --target example/target.txt \
--model-path $file \
--config-yaml config_gcmvn.yaml --multitask-config-yaml config_mtl_asr_st_ctcst.yaml \
--agent $ROOT/agent/speech_to_speech_streamspeech_agent.py \
--vocoder $VOCODER_CKPT --vocoder-cfg $VOCODER_CFG --dur-prediction \
--output $output_dir/chunk_size=$chunk_size \
--source-segment-size $chunk_size \
--quality-metrics ASR_BLEU --target-speech-lang en --latency-metrics AL AP DAL StartOffset EndOffset LAAL ATD NumChunks DiscontinuitySum DiscontinuityAve DiscontinuityNum RTF \
--device gpu --computation-aware \
--output-asr-translation True
3. 应用案例和最佳实践
实时语音翻译
StreamSpeech 可以应用于实时语音翻译场景,例如国际会议、跨国视频通话等。通过 StreamSpeech,用户可以在说话的同时听到翻译后的语音,极大地提升了跨语言交流的效率。
语音助手
在语音助手应用中,StreamSpeech 可以用于实时语音识别和语音合成,提升语音助手的响应速度和用户体验。
教育领域
在教育领域,StreamSpeech 可以用于实时语音翻译和语音合成,帮助学生更好地理解外语课程内容。
4. 典型生态项目
Fairseq
Fairseq 是一个用于序列到序列任务的强大工具包,StreamSpeech 基于 Fairseq 构建,提供了丰富的模型训练和推理功能。
SimulEval
SimulEval 是一个用于评估同时翻译系统的工具包,StreamSpeech 使用 SimulEval 进行模型评估和推理。
HiFi-GAN
HiFi-GAN 是一个高质量的语音合成模型,StreamSpeech 使用 HiFi-GAN 进行语音合成,提供了自然流畅的语音输出。
通过这些生态项目的支持,StreamSpeech 能够提供高效、准确的语音识别、翻译和合成服务。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1