DSRG 项目使用教程
2024-09-18 14:11:38作者:平淮齐Percy
项目介绍
DSRG(Deep Seeded Region Growing)是一个基于Caffe框架实现的弱监督语义分割网络。该项目的主要目标是利用弱监督信息(如图像级别的标签)来生成高质量的语义分割结果。DSRG通过深度种子区域增长模块,迭代地优化像素级别的监督信息和分割网络的参数,从而提高分割的准确性和完整性。
项目快速启动
环境准备
- Python 环境:确保你已经安装了Python,建议使用Python 3.x版本。
- Caffe 框架:DSRG基于Caffe框架,因此需要安装Caffe。你可以参考Caffe官方安装指南进行安装。
- 依赖包:安装项目所需的Python依赖包。
pip install -r python-dependencies.txt
下载项目
git clone https://github.com/speedinghzl/DSRG.git
cd DSRG
数据准备
- 下载预训练模型:下载VGG16模型,并将其放置在
training/目录下。 - 下载种子数据:下载CAM种子数据,并将其放置在
training/localization_cues/目录下。
训练模型
进入训练目录并开始训练:
cd training
mkdir localization_cues
# 设置root_folder参数和PASCAL_DIR参数
bash run.sh
训练完成后,模型将保存在models/目录下。
应用案例和最佳实践
应用案例
DSRG可以应用于多种场景,如自动驾驶中的道路分割、医学图像分析中的组织分割等。以下是一个简单的应用案例:
自动驾驶中的道路分割
在自动驾驶领域,道路分割是一个关键任务。DSRG可以通过弱监督学习的方式,利用少量的标注数据生成高质量的道路分割结果,从而减少数据标注的工作量。
最佳实践
- 数据增强:在训练过程中,使用数据增强技术(如随机裁剪、旋转等)可以提高模型的泛化能力。
- 多尺度训练:使用多尺度的输入图像进行训练,可以提高模型对不同尺度物体的分割能力。
- 模型融合:在实际应用中,可以结合多个模型的预测结果,通过模型融合的方式进一步提高分割精度。
典型生态项目
SEC(Seed, Expand, and Constrain)
SEC是另一个基于弱监督学习的语义分割项目,与DSRG类似,SEC也通过种子区域增长的方式进行分割。DSRG在SEC的基础上进行了改进,提高了分割的准确性和效率。
Deeplab
Deeplab是一个基于深度学习的语义分割框架,广泛应用于各种分割任务。DSRG可以与Deeplab结合使用,通过弱监督学习的方式生成高质量的分割结果。
CRF(Conditional Random Fields)
CRF是一种后处理技术,可以进一步优化分割结果。DSRG的分割结果可以通过CRF进行后处理,从而提高分割的边界准确性。
通过以上步骤,你可以快速启动并使用DSRG项目进行弱监督语义分割任务。希望这篇教程对你有所帮助!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
392
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
582
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
164
暂无简介
Dart
765
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350