CLIMS 项目使用教程
2024-09-13 17:54:08作者:龚格成
1. 项目介绍
CLIMS(Cross Language Image Matching for Weakly Supervised Semantic Segmentation)是一个用于弱监督语义分割的开源项目。该项目在CVPR 2022上发表,主要通过跨语言图像匹配技术来提升弱监督语义分割的效果。CLIMS的核心思想是通过图像和文本之间的匹配来生成更准确的语义分割图。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了Python和相关的依赖库。你可以使用以下命令安装所需的依赖:
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git
2.2 数据准备
你需要下载PASCAL VOC2012数据集和MS-COCO 2014数据集,并确保数据结构如下:
PASCAL VOC2012
├── VOC2012/
| ├── Annotations
| ├── ImageSets
| ├── SegmentationClass
| ├── SegmentationClassAug
| └── SegmentationObject
MS-COCO 2014
├── COCO/
| ├── train2014
| ├── val2014
| ├── annotations
| | ├── instances_train2014.json
| | ├── instances_val2014.json
| ├── mask
| | ├── train2014
| | ├── val2014
2.3 训练与评估
2.3.1 训练CLIMS
使用以下命令在PASCAL VOC2012数据集上训练CLIMS:
CUDA_VISIBLE_DEVICES=0 python run_sample.py --voc12_root /data1/xjheng/dataset/VOC2012/ --hyper 10 24 1 0 2 --clims_num_epoches 15 --cam_eval_thres 0.15 --work_space clims_voc12 --cam_network net.resnet50_clims --train_clims_pass True --make_clims_pass True --eval_cam_pass True
2.3.2 生成伪语义分割图
训练完成后,生成伪语义分割图:
CUDA_VISIBLE_DEVICES=0 python run_sample.py --voc12_root /data1/xjheng/dataset/VOC2012/ --cam_eval_thres 0.15 --work_space clims_voc12 --cam_network net.resnet50_clims --cam_to_ir_label_pass True --train_irn_pass True --make_sem_seg_pass True --eval_sem_seg_pass True
2.3.3 评估结果
评估生成的伪语义分割图:
cd segmentation/
# 运行评估脚本
3. 应用案例和最佳实践
3.1 应用案例
CLIMS可以应用于多种场景,如医学图像分析、自动驾驶中的场景理解等。通过弱监督学习,CLIMS能够在标注数据有限的情况下,生成高质量的语义分割图。
3.2 最佳实践
- 数据预处理:确保数据集的结构和格式符合要求,以避免训练过程中的错误。
- 超参数调优:根据具体任务调整超参数,如学习率、批量大小等,以获得最佳性能。
- 模型评估:定期评估模型性能,确保生成的伪语义分割图质量。
4. 典型生态项目
- DeepLabv2:用于语义分割的深度学习模型,CLIMS生成的伪语义分割图可以作为DeepLabv2的输入。
- IRNet:用于弱监督语义分割的另一个开源项目,CLIMS与其结合可以进一步提升分割效果。
通过以上步骤,你可以快速上手并使用CLIMS项目进行弱监督语义分割任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
89
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
337
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
437
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19