CLIMS 项目使用教程
2024-09-13 01:19:55作者:龚格成
1. 项目介绍
CLIMS(Cross Language Image Matching for Weakly Supervised Semantic Segmentation)是一个用于弱监督语义分割的开源项目。该项目在CVPR 2022上发表,主要通过跨语言图像匹配技术来提升弱监督语义分割的效果。CLIMS的核心思想是通过图像和文本之间的匹配来生成更准确的语义分割图。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了Python和相关的依赖库。你可以使用以下命令安装所需的依赖:
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git
2.2 数据准备
你需要下载PASCAL VOC2012数据集和MS-COCO 2014数据集,并确保数据结构如下:
PASCAL VOC2012
├── VOC2012/
| ├── Annotations
| ├── ImageSets
| ├── SegmentationClass
| ├── SegmentationClassAug
| └── SegmentationObject
MS-COCO 2014
├── COCO/
| ├── train2014
| ├── val2014
| ├── annotations
| | ├── instances_train2014.json
| | ├── instances_val2014.json
| ├── mask
| | ├── train2014
| | ├── val2014
2.3 训练与评估
2.3.1 训练CLIMS
使用以下命令在PASCAL VOC2012数据集上训练CLIMS:
CUDA_VISIBLE_DEVICES=0 python run_sample.py --voc12_root /data1/xjheng/dataset/VOC2012/ --hyper 10 24 1 0 2 --clims_num_epoches 15 --cam_eval_thres 0.15 --work_space clims_voc12 --cam_network net.resnet50_clims --train_clims_pass True --make_clims_pass True --eval_cam_pass True
2.3.2 生成伪语义分割图
训练完成后,生成伪语义分割图:
CUDA_VISIBLE_DEVICES=0 python run_sample.py --voc12_root /data1/xjheng/dataset/VOC2012/ --cam_eval_thres 0.15 --work_space clims_voc12 --cam_network net.resnet50_clims --cam_to_ir_label_pass True --train_irn_pass True --make_sem_seg_pass True --eval_sem_seg_pass True
2.3.3 评估结果
评估生成的伪语义分割图:
cd segmentation/
# 运行评估脚本
3. 应用案例和最佳实践
3.1 应用案例
CLIMS可以应用于多种场景,如医学图像分析、自动驾驶中的场景理解等。通过弱监督学习,CLIMS能够在标注数据有限的情况下,生成高质量的语义分割图。
3.2 最佳实践
- 数据预处理:确保数据集的结构和格式符合要求,以避免训练过程中的错误。
- 超参数调优:根据具体任务调整超参数,如学习率、批量大小等,以获得最佳性能。
- 模型评估:定期评估模型性能,确保生成的伪语义分割图质量。
4. 典型生态项目
- DeepLabv2:用于语义分割的深度学习模型,CLIMS生成的伪语义分割图可以作为DeepLabv2的输入。
- IRNet:用于弱监督语义分割的另一个开源项目,CLIMS与其结合可以进一步提升分割效果。
通过以上步骤,你可以快速上手并使用CLIMS项目进行弱监督语义分割任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
340
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
266
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
668
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
45
32