Pants构建系统将hdrhistogram纳入默认依赖以增强统计功能
Pants构建系统近期对其统计功能进行了重要优化,将原本作为可选依赖的hdrhistogram库纳入了默认依赖集合。这一变更显著改善了系统的性能监控能力,同时简化了用户配置流程。
在构建系统的运行过程中,性能指标的收集和分析对于优化构建效率至关重要。Pants通过其内置的统计子系统能够跟踪各类关键指标,如本地存储读取操作的大小分布等。这些指标以直方图形式呈现,能够展示最小值、最大值、平均值、标准差等统计信息,以及各种百分位数(如p50、p90、p99等)。
此前,这一功能的完整使用需要用户手动安装hdrhistogram库。当用户启用统计日志功能但未安装该库时,系统会显示警告信息,指导用户如何添加这一依赖。这种设计虽然灵活,但也带来了几个问题:首先,增加了用户的配置负担;其次,可能导致不一致的用户体验;最重要的是,它鼓励了直接从PyPI安装未固定版本依赖的做法,这在安全性和可重复性方面存在隐患。
技术实现上,hdrhistogram是一个高效的直方图库,专门为高动态范围场景设计。它能够精确记录和统计大范围数值分布,非常适合构建系统这类需要监控各种规模操作(从几字节到数兆字节)的场景。该库的加入为Pants提供了专业的统计计算能力,包括精确的分位数计算等高级功能。
将hdrhistogram纳入默认依赖后,Pants现在能够无条件地提供完整的统计信息展示,无需用户额外配置。这一变更虽然引入了约1MB的额外存储空间(包含hdrhistogram及其依赖pbr),但考虑到现代构建环境的存储容量和Pants现有的依赖规模,这一增加是可接受的。
从架构角度看,这一优化体现了Pants项目对用户体验和系统健壮性的持续关注。它消除了一个潜在的配置陷阱,使统计功能更加可靠。同时,这也是Pants项目依赖管理策略的一个典型案例,展示了如何在功能完整性和依赖精简之间取得平衡。
未来,Pants项目可能会考虑将这部分统计功能重构为原生实现(可能使用Rust),以进一步优化性能和减少依赖。但就目前而言,采用成熟的hdrhistogram库是一个合理的折中方案,能够快速可靠地满足用户需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00