探索高性能的延迟度量工具:HdrHistogram_rust
2024-05-23 20:56:15作者:柯茵沙
项目介绍
HdrHistogram_rust 是一个基于 Rust 的高效延迟度量库,它是Gil Tene的经典HdrHistogram的移植版本。这个库专注于记录和分析大规模数值范围内采样数据的频率,特别适用于处理非正常分布的数据,如网络延迟等。
技术分析
HdrHistogram_rust 提供了在指定范围(如 1 微秒到 1 小时)内,以高精度(比如 3 位有效数字)记录数据值的能力。其核心技术特点是:
- 动态范围与精度可控:通过设置显著位数,可以在广泛的值范围内保持精确的量化。
- 恒定性能:无论记录了多少数据样本,它的内存占用是固定的,且不涉及任何记录操作中的分配操作。这确保了记录数据的时间常数,直接计算存储位置,无需迭代或搜索。
- 自动扩展:如果需要记录超出当前范围的值,自动调整大小(在某些配置下)。
应用场景
在高性能、低延迟敏感的应用中,如分布式系统、云服务、实时数据分析等,HdrHistogram_rust 可用于:
- 监控网络延迟:准确记录从微秒到小时的延迟,并提供详细统计信息。
- 性能优化:通过深入分析极端值,找出可能的性能瓶颈。
- 负载测试:在模拟高并发场景下收集并分析服务响应时间。
项目特点
- Rust 语言特性:符合 Rust 语言的编程习惯,提供了丰富的 Rust 风格的 API。
- 高效记录:在现代硬件上,数据记录时间低至 3-6 纳秒。
- 错误处理:清晰的错误处理机制,包括返回结果类型以及可选的 Panic 模式。
- 内存效率:固定内存成本,避免因样本数量增加而带来的额外开销。
- API 完善:支持统计查询、各种迭代器,方便对数据进行深度分析。
为了更好地利用 HdrHistogram_rust,你可以创建一个适应范围的实例,然后记录样本,最后通过查询获取有价值的信息,如样本总数和特定百分位数的值。
use hdrhistogram::Histogram;
let mut hist = Histogram::<u64>::new_with_bounds(1, 60 * 60 * 1000, 2).unwrap();
hist.record(54321).expect("value 54321 should be in range");
println!("99.9'th percentile: {}", hist.value_at_quantile(0.999));
要了解更多关于 HdrHistogram_rust 的详细信息,可以查看其在 Crates.io 和 Docs.rs 上的文档,以及原始 Java 实现的说明。
如果你的项目需要跨语言集成,可以考虑使用 FFI 绑定到 C 版本的 HdrHistogram (hdrhistogram_c)。
总的来说,HdrHistogram_rust 是一个强大的工具,能够帮助开发者深入了解他们的系统的性能表现,从而实现更精细的调优。立即开始你的探索之旅,为你的应用程序带来更高级别的性能监控!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
227
95
暂无简介
Dart
727
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
285
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
702
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
442
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19