探索高性能的延迟度量工具:HdrHistogram_rust
2024-05-23 20:56:15作者:柯茵沙
项目介绍
HdrHistogram_rust 是一个基于 Rust 的高效延迟度量库,它是Gil Tene的经典HdrHistogram的移植版本。这个库专注于记录和分析大规模数值范围内采样数据的频率,特别适用于处理非正常分布的数据,如网络延迟等。
技术分析
HdrHistogram_rust 提供了在指定范围(如 1 微秒到 1 小时)内,以高精度(比如 3 位有效数字)记录数据值的能力。其核心技术特点是:
- 动态范围与精度可控:通过设置显著位数,可以在广泛的值范围内保持精确的量化。
- 恒定性能:无论记录了多少数据样本,它的内存占用是固定的,且不涉及任何记录操作中的分配操作。这确保了记录数据的时间常数,直接计算存储位置,无需迭代或搜索。
- 自动扩展:如果需要记录超出当前范围的值,自动调整大小(在某些配置下)。
应用场景
在高性能、低延迟敏感的应用中,如分布式系统、云服务、实时数据分析等,HdrHistogram_rust 可用于:
- 监控网络延迟:准确记录从微秒到小时的延迟,并提供详细统计信息。
- 性能优化:通过深入分析极端值,找出可能的性能瓶颈。
- 负载测试:在模拟高并发场景下收集并分析服务响应时间。
项目特点
- Rust 语言特性:符合 Rust 语言的编程习惯,提供了丰富的 Rust 风格的 API。
- 高效记录:在现代硬件上,数据记录时间低至 3-6 纳秒。
- 错误处理:清晰的错误处理机制,包括返回结果类型以及可选的 Panic 模式。
- 内存效率:固定内存成本,避免因样本数量增加而带来的额外开销。
- API 完善:支持统计查询、各种迭代器,方便对数据进行深度分析。
为了更好地利用 HdrHistogram_rust,你可以创建一个适应范围的实例,然后记录样本,最后通过查询获取有价值的信息,如样本总数和特定百分位数的值。
use hdrhistogram::Histogram;
let mut hist = Histogram::<u64>::new_with_bounds(1, 60 * 60 * 1000, 2).unwrap();
hist.record(54321).expect("value 54321 should be in range");
println!("99.9'th percentile: {}", hist.value_at_quantile(0.999));
要了解更多关于 HdrHistogram_rust 的详细信息,可以查看其在 Crates.io 和 Docs.rs 上的文档,以及原始 Java 实现的说明。
如果你的项目需要跨语言集成,可以考虑使用 FFI 绑定到 C 版本的 HdrHistogram (hdrhistogram_c)。
总的来说,HdrHistogram_rust 是一个强大的工具,能够帮助开发者深入了解他们的系统的性能表现,从而实现更精细的调优。立即开始你的探索之旅,为你的应用程序带来更高级别的性能监控!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868