室内场景理解的物理渲染技术:PBR for Indoor Scene Understanding
2024-09-21 16:16:06作者:宣聪麟
项目介绍
"Physically Based Rendering for Indoor Scene Understanding" 是一个用于生成室内场景理解合成数据的完整管道。该项目由普林斯顿大学的研究团队开发,旨在通过物理渲染技术生成高质量的室内场景数据,以支持计算机视觉和模式识别的研究。项目提供了生成数据的全过程,并提供了大部分中间和最终结果的下载链接。更多详细信息,请访问项目网页 http://pbrs.cs.princeton.edu。
项目技术分析
该项目主要依赖于以下几个关键技术和数据集:
- SUNCG Dataset: 提供了渲染数据所需的原始场景模型。用户需要签署协议才能获得完整的数据集访问权限。
- Gaps: 一个C++解析器,用于生成相机视角、场景OBJ模型和各种地面真值。
- Mitsuba: 一个基于物理的渲染引擎,用于生成高质量的渲染图像。
项目的技术流程包括生成相机视角、准备3D模型、进行物理渲染以及生成地面真值。整个流程高度自动化,用户可以通过简单的配置文件和脚本快速启动和运行。
项目及技术应用场景
该项目适用于以下应用场景:
- 计算机视觉研究: 通过生成高质量的合成数据,研究人员可以训练和测试各种计算机视觉算法,特别是在室内场景理解方面。
- 深度学习模型训练: 生成的数据可以用于训练卷积神经网络(CNN),以提高模型在室内场景中的表现。
- 虚拟现实和增强现实: 高质量的渲染图像和3D模型可以用于虚拟现实和增强现实应用,提升用户体验。
项目特点
- 高质量渲染: 使用Mitsuba渲染引擎,生成的图像具有高保真度和逼真的光照效果。
- 自动化流程: 项目提供了完整的自动化脚本,用户只需简单配置即可快速生成数据。
- 丰富的地面真值: 生成的数据包括颜色渲染、深度图像、表面法线、实例分割等多种地面真值,满足多种研究需求。
- 灵活的数据处理: 用户可以根据需要自定义相机视角和3D模型,灵活调整渲染参数。
通过使用"Physically Based Rendering for Indoor Scene Understanding"项目,研究人员和开发者可以轻松生成高质量的室内场景数据,推动计算机视觉和深度学习技术的发展。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669