Plane-Based Optimization of Geometry and Texture for RGB-D Reconstruction of Indoor Scenes 使用教程
2024-09-18 21:39:52作者:翟江哲Frasier
1. 项目介绍
Plane-Based Optimization of Geometry and Texture for RGB-D Reconstruction of Indoor Scenes 是一个用于室内场景的RGB-D重建项目,通过基于平面的几何和纹理优化,生成高质量的室内场景重建结果。该项目包含四个主要程序,分别用于网格分割、网格可见性计算、图像模糊估计和网格纹理优化。
主要功能
- 网格分割 (
mesh_partition): 将密集网格基于平面进行分割和简化。 - 网格可见性计算 (
mesh_visibility): 计算每个RGB-D帧中可见的网格顶点。 - 图像模糊估计 (
blur_estimation): 估计RGB-D序列中彩色图像的模糊度。 - 网格纹理优化 (
mesh_texture_opt): 基于输入的RGB-D序列、简化网格、可见性数据和模糊度,输出最终的纹理优化OBJ网格。
相关论文
- Wang, Chao, and Xiaohu Guo. "Plane-Based Optimization of Geometry and Texture for RGB-D Reconstruction of Indoor Scenes." 2018 International Conference on 3D Vision (3DV). IEEE, 2018.
- Wang, Chao, and Xiaohu Guo. "Efficient Plane-Based Optimization of Geometry and Texture for Indoor RGB-D Reconstruction." The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. 2019.
2. 项目快速启动
环境准备
确保系统中已安装以下依赖库:
- Eigen
- OpenCV 2 or 3
- gflags
- GLEW (仅
mesh_visibility需要) - GLFW (仅
mesh_visibility需要) - GLM (代码已包含,仅
mesh_visibility需要)
编译项目
在Linux系统中,可以通过运行以下脚本进行编译:
./build_linux.sh
运行项目
使用以下脚本运行整个管道:
./run_linux.sh
注意:在运行脚本前,请根据实际输入数据修改相关参数。
3. 应用案例和最佳实践
应用案例
- 室内场景重建: 使用RGB-D相机采集室内场景数据,通过该项目生成高质量的室内场景重建模型。
- 虚拟现实 (VR) 和增强现实 (AR): 将重建的室内场景模型用于VR和AR应用中,提供更真实的虚拟环境。
最佳实践
- 数据准备: 使用BundleFusion或3DLite数据作为输入,确保数据格式符合项目要求。
- 内存管理: 对于包含大量面的网格,确保系统有足够的内存(例如,1M面需要约20G内存)。
- 性能优化: 考虑引入OpenMP或GPU计算来加速项目中的耗时过程。
4. 典型生态项目
相关项目
- RGBDPlaneDetection: 用于RGB-D帧的平面检测,项目地址:https://github.com/chaowang15/RGBDPlaneDetection
- BundleFusion: 用于RGB-D数据的高质量重建,项目地址:https://github.com/niessner/BundleFusion
- 3DLite: 提供高质量的RGB-D数据集,项目地址:https://github.com/andyzeng/3d-lite
通过结合这些项目,可以构建更完整的RGB-D重建和优化流程。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694