Apache RocketMQ 分层存储缓存过大问题分析与解决方案
问题背景
在Apache RocketMQ 5.3.1版本中,当启用分层存储功能并配置强制从分层存储拉取消息时,消费者在拉取大消息时会遇到异常。具体表现为:第一次拉取4MB大小的消息可以成功,但第二次尝试拉取相同消息时会失败,并抛出"Adjusted frame length exceeds 16777216"的异常。
技术原理分析
这个问题涉及到RocketMQ的分层存储架构和Netty的帧解码机制:
-
分层存储机制:RocketMQ的分层存储将消息数据分为热数据(内存/本地磁盘)和冷数据(远程存储),通过TieredMessageStore插件实现。当配置
tieredStorageLevel=FORCE时,系统会强制从分层存储中读取消息。 -
Netty帧解码:RocketMQ使用Netty进行网络通信,默认配置了16MB的最大帧长度限制。当消息超过这个大小时,Netty会抛出TooLongFrameException。
-
缓存机制:分层存储模块在读取消息时会使用缓存来提高性能。问题出在缓存处理逻辑上,当读取大消息时,缓存中的数据可能被错误地拼接,导致最终返回的数据大小超出限制。
问题根因
深入分析代码后发现,问题的根本原因在于:
-
分层存储的缓存管理逻辑存在缺陷,当处理大消息时,缓存中的数据块可能被错误地合并,导致返回的消息体大小超出预期。
-
虽然单条消息大小(4MB)在Netty的16MB限制范围内,但由于缓存处理不当,实际返回的数据可能被错误地放大。
-
第一次拉取成功是因为直接从存储读取,而第二次失败是因为尝试从缓存读取时触发了这个问题。
解决方案
社区通过以下修改解决了这个问题:
-
修复了分层存储缓存管理逻辑,确保大消息的缓存处理正确无误。
-
优化了消息读取流程,防止缓存中的数据被错误拼接。
-
增加了对大消息处理的检查机制,确保返回的数据大小符合预期。
最佳实践建议
对于使用RocketMQ分层存储功能的用户,建议:
-
对于大消息场景(超过1MB),应仔细测试分层存储功能。
-
监控网络层异常,特别是TooLongFrameException,这可能是缓存问题的早期信号。
-
考虑消息大小与网络配置的匹配关系,必要时调整Netty的最大帧大小参数。
-
及时升级到包含此修复的版本,以确保分层存储功能的稳定性。
总结
这个问题展示了分布式消息系统中缓存管理与网络通信之间的微妙交互。RocketMQ社区通过深入分析缓存处理逻辑,修复了一个可能导致大消息处理异常的关键问题。这提醒我们在实现分层存储这类复杂功能时,需要特别注意处理逻辑和异常场景的处理。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00