BeeWare Python-Apple-support 3.13-b8版本发布:iOS/macOS/watchOS/tvOS全面支持
Python-Apple-support是BeeWare项目组开发的一个重要工具集,它为苹果生态系统的各个平台(包括iOS、macOS、watchOS和tvOS)提供了Python运行环境的完整支持。这个项目使得开发者能够在苹果设备上原生运行Python代码,为跨平台应用开发提供了强大支持。
最新发布的3.13-b8版本是基于Python 3.13.4构建的,包含了多项重要更新和改进。这个版本特别解决了测试环境中的一个关键问题——在没有预置测试设备的环境中运行测试套件的情况。这种情况在新安装的Xcode环境或持续集成(CI)配置中非常常见,此次更新确保了在这些环境下也能顺利运行测试。
核心组件更新
本次发布包含了多个关键依赖库的更新版本:
- Python核心:升级至3.13.4版本,带来了Python语言的最新特性和改进
- BZip2:1.0.8-2版本,提供高效的数据压缩功能
- libFFI:3.4.7-2版本,作为外部函数接口库,支持与其他语言的互操作
- mpdecimal:4.0.0-2版本,提供高精度的十进制算术运算支持
- OpenSSL:3.0.16-2版本,为安全通信提供加密支持
- XZ:5.6.4-2版本,另一种高效的数据压缩工具
这些组件的更新不仅带来了性能提升,还修复了已知的问题,增强了整个Python运行环境的稳定性和安全性。
平台支持情况
Python-Apple-support 3.13-b8版本为苹果全平台提供了完整的支持包:
- iOS支持包:专为iPhone和iPad设备优化,支持最新的iOS版本
- macOS支持包:为苹果桌面系统提供原生Python运行环境
- tvOS支持包:适配苹果电视操作系统,支持大屏幕应用开发
- watchOS支持包:为Apple Watch提供轻量级Python运行环境
每个平台的支持包都经过专门优化,考虑了不同设备的处理器架构、内存限制和操作系统特性,确保Python代码能够在各个平台上高效运行。
测试环境改进
3.13-b8版本的一个显著改进是增强了测试环境的兼容性。在之前的版本中,当开发环境没有预先配置测试设备时(特别是在新安装的Xcode或CI环境中),测试套件可能会运行失败。这个版本通过以下方式解决了这个问题:
- 改进了设备检测逻辑,在没有物理设备时能够回退到模拟器测试
- 优化了测试初始化流程,减少对预配置环境的依赖
- 增强了错误处理机制,提供更清晰的诊断信息
这些改进特别有利于持续集成流程,使得自动化测试能够在各种环境下可靠运行,提高了开发效率。
开发者价值
对于使用Python开发苹果平台应用的开发者来说,Python-Apple-support项目提供了不可替代的价值:
- 原生集成:允许Python代码直接与苹果原生API交互,突破脚本语言的限制
- 跨平台一致性:在不同苹果设备上提供一致的Python运行环境
- 性能优化:针对苹果各平台的硬件特性进行了专门优化
- 开发效率:使Python开发者能够快速为苹果生态系统开发应用
3.13-b8版本的发布进一步提升了这些价值,特别是在测试和持续集成方面的改进,使得开发流程更加顺畅可靠。
总结
BeeWare Python-Apple-support 3.13-b8版本是一个重要的里程碑,它不仅将Python生态系统带到了苹果全平台,还通过解决测试环境兼容性问题,显著提升了开发体验。对于希望在苹果设备上使用Python的开发者来说,这个版本提供了更稳定、更可靠的解决方案。随着Python 3.13特性的加入和核心依赖库的更新,开发者现在能够以更高的效率为iOS、macOS、watchOS和tvOS创建功能丰富的应用程序。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00