SentencePiece训练中分隔符字符被包含在词汇表的问题分析
2025-05-21 23:16:47作者:魏献源Searcher
问题背景
在使用SentencePiece进行子词单元训练时,当指定pretokenization_delimiter参数后,发现分隔符中的单个字符会被包含在最终生成的词汇表(vocab)中。这一现象引起了开发者对训练过程中字符处理逻辑的关注。
问题复现
通过一个简单的例子可以复现这个问题:
- 准备训练数据文件train_mini.txt,内容为:
えー||||騒音||||レベル||||の||||目安||||と||||し||||まし||||て
- 使用以下命令训练模型:
spm_train --input=train_mini.txt --model_type=unigram --vocab_size=19 --pretokenization_delimiter="||||" --model_prefix=train_mini
- 检查生成的词汇表train_mini.vocab,会发现其中包含了分隔符"||||"中的单个竖线字符"|"。
技术分析
当前实现机制
在SentencePiece的当前实现中,训练过程会统计所有字符的出现频率,包括pretokenization_delimiter中的字符。具体来说:
- 训练器会首先遍历所有句子,统计每个字符的出现频率
- 这些统计信息用于确定哪些字符必须包含在最终的词汇表中
- 即使指定了pretokenization_delimiter,分隔符中的字符仍会被视为普通字符进行统计
问题根源
问题的核心在于字符统计阶段没有排除pretokenization_delimiter中的字符。在trainer_interface.cc文件的字符统计逻辑中,直接处理原始句子文本,而没有先去除分隔符。
解决方案探讨
一种可能的解决方案是在字符统计阶段先去除pretokenization_delimiter。具体实现可以:
- 检查是否设置了pretokenization_delimiter
- 如果设置了,在字符统计前先将所有分隔符从文本中移除
- 然后对处理后的文本进行字符统计
这种修改可以确保分隔符中的字符不会被包含在词汇表中,更符合pretokenization_delimiter的设计初衷。
官方回应
项目维护者认为当前行为是预期的,因为分隔符是"|||"(三个竖线)时,单个竖线"|"本身不被视为分隔符。然而,即使用单个竖线"|"作为分隔符,该字符仍会被包含在词汇表中。
实际影响
这个问题可能导致:
- 词汇表中包含不必要的字符,占用宝贵的词汇表空间
- 模型可能学习到与分隔符相关的子词单元,影响分词效果
- 在后续处理中需要额外步骤来过滤这些字符
最佳实践建议
对于需要使用pretokenization_delimiter的场景,建议:
- 仔细检查生成的词汇表,确保没有包含不需要的字符
- 如果发现不需要的字符,可以手动从词汇表中移除
- 考虑在训练前预处理数据,去除或替换分隔符字符
总结
SentencePiece在处理pretokenization_delimiter时的字符统计逻辑值得注意。虽然当前行为被项目维护者认为是预期的,但用户需要了解这一特性并在实际应用中加以考虑。对于有特殊需求的场景,可能需要自行修改训练流程或预处理数据来达到期望的结果。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0118DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
270

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
909
541

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.21 K

openGauss kernel ~ openGauss is an open source relational database management system
C++
142
188

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
63
58

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4