SentencePiece训练中分隔符字符被包含在词汇表的问题分析
2025-05-21 18:52:55作者:魏献源Searcher
问题背景
在使用SentencePiece进行子词单元训练时,当指定pretokenization_delimiter参数后,发现分隔符中的单个字符会被包含在最终生成的词汇表(vocab)中。这一现象引起了开发者对训练过程中字符处理逻辑的关注。
问题复现
通过一个简单的例子可以复现这个问题:
- 准备训练数据文件train_mini.txt,内容为:
えー||||騒音||||レベル||||の||||目安||||と||||し||||まし||||て
- 使用以下命令训练模型:
spm_train --input=train_mini.txt --model_type=unigram --vocab_size=19 --pretokenization_delimiter="||||" --model_prefix=train_mini
- 检查生成的词汇表train_mini.vocab,会发现其中包含了分隔符"||||"中的单个竖线字符"|"。
技术分析
当前实现机制
在SentencePiece的当前实现中,训练过程会统计所有字符的出现频率,包括pretokenization_delimiter中的字符。具体来说:
- 训练器会首先遍历所有句子,统计每个字符的出现频率
- 这些统计信息用于确定哪些字符必须包含在最终的词汇表中
- 即使指定了pretokenization_delimiter,分隔符中的字符仍会被视为普通字符进行统计
问题根源
问题的核心在于字符统计阶段没有排除pretokenization_delimiter中的字符。在trainer_interface.cc文件的字符统计逻辑中,直接处理原始句子文本,而没有先去除分隔符。
解决方案探讨
一种可能的解决方案是在字符统计阶段先去除pretokenization_delimiter。具体实现可以:
- 检查是否设置了pretokenization_delimiter
- 如果设置了,在字符统计前先将所有分隔符从文本中移除
- 然后对处理后的文本进行字符统计
这种修改可以确保分隔符中的字符不会被包含在词汇表中,更符合pretokenization_delimiter的设计初衷。
官方回应
项目维护者认为当前行为是预期的,因为分隔符是"|||"(三个竖线)时,单个竖线"|"本身不被视为分隔符。然而,即使用单个竖线"|"作为分隔符,该字符仍会被包含在词汇表中。
实际影响
这个问题可能导致:
- 词汇表中包含不必要的字符,占用宝贵的词汇表空间
- 模型可能学习到与分隔符相关的子词单元,影响分词效果
- 在后续处理中需要额外步骤来过滤这些字符
最佳实践建议
对于需要使用pretokenization_delimiter的场景,建议:
- 仔细检查生成的词汇表,确保没有包含不需要的字符
- 如果发现不需要的字符,可以手动从词汇表中移除
- 考虑在训练前预处理数据,去除或替换分隔符字符
总结
SentencePiece在处理pretokenization_delimiter时的字符统计逻辑值得注意。虽然当前行为被项目维护者认为是预期的,但用户需要了解这一特性并在实际应用中加以考虑。对于有特殊需求的场景,可能需要自行修改训练流程或预处理数据来达到期望的结果。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210