OpenRLHF项目中训练Qwen2.5-72B大模型时的内存优化实践
2025-06-03 17:37:45作者:何举烈Damon
背景介绍
在OpenRLHF项目中训练Qwen2.5-72B这类超大规模语言模型时,内存管理是一个关键挑战。即使配备了1.4TB内存的高性能计算节点,训练过程中仍然可能遇到内存不足(OOM)的问题。本文将分享在实际训练过程中遇到的内存问题及其解决方案。
问题现象
训练过程中主要遇到两种内存相关问题:
- 初始训练时出现内存不足
- 从检查点恢复训练时出现内存不足
解决方案探索
禁用pin_memory优化
最初的解决方案是修改DeepSpeed配置中的pin_memory参数。在openrlhf/utils/deepspeed/deepspeed_utils.py文件中,将优化器卸载配置中的pin_memory设置为False:
"offload_optimizer": {
"device": "cpu" if adam_offload else "none",
"pin_memory": False
}
这一修改解决了初始训练时的内存问题。pin_memory通常用于加速CPU到GPU的数据传输,但在内存紧张的情况下,禁用它可以减少内存占用。
调整卸载比例
虽然禁用pin_memory解决了初始训练的问题,但从检查点恢复训练时仍然会遇到OOM。进一步的解决方案是调整优化器卸载比例:
"offload_optimizer": {
"device": "cpu" if adam_offload else "none",
"pin_memory": False,
"ratio": 0.9
}
通过将卸载比例设置为0.9,系统只会将90%的优化器状态卸载到CPU,保留10%在GPU上。这种部分卸载策略在内存使用和性能之间取得了平衡。
技术原理分析
DeepSpeed的Zero优化
这些配置调整都基于DeepSpeed的Zero优化技术。Zero优化通过将模型状态(参数、梯度和优化器状态)分割到不同设备上来减少内存占用。
卸载策略的影响
- pin_memory:启用时,系统会锁定内存页,防止被交换到磁盘,提高传输效率但增加内存压力。
- 卸载比例:控制多少优化器状态保留在GPU上。比例越高,GPU内存占用越少,但可能增加CPU-GPU通信开销。
实践建议
对于训练超大规模模型:
- 从较小的卸载比例开始(如0.5),逐步增加直到找到稳定点
- 监控系统内存使用情况,特别是交换空间的使用
- 考虑使用内存分析工具定位内存热点
- 在检查点恢复时预留更多内存余量
总结
在OpenRLHF项目中训练Qwen2.5-72B这类大模型时,精细的内存配置至关重要。通过调整DeepSpeed的卸载参数,特别是pin_memory和卸载比例,可以有效解决训练过程中的内存问题。这些经验也适用于其他大规模深度学习训练场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19