OpenRLHF项目中训练Qwen2.5-72B大模型时的内存优化实践
2025-06-03 11:24:15作者:何举烈Damon
背景介绍
在OpenRLHF项目中训练Qwen2.5-72B这类超大规模语言模型时,内存管理是一个关键挑战。即使配备了1.4TB内存的高性能计算节点,训练过程中仍然可能遇到内存不足(OOM)的问题。本文将分享在实际训练过程中遇到的内存问题及其解决方案。
问题现象
训练过程中主要遇到两种内存相关问题:
- 初始训练时出现内存不足
- 从检查点恢复训练时出现内存不足
解决方案探索
禁用pin_memory优化
最初的解决方案是修改DeepSpeed配置中的pin_memory参数。在openrlhf/utils/deepspeed/deepspeed_utils.py文件中,将优化器卸载配置中的pin_memory设置为False:
"offload_optimizer": {
"device": "cpu" if adam_offload else "none",
"pin_memory": False
}
这一修改解决了初始训练时的内存问题。pin_memory通常用于加速CPU到GPU的数据传输,但在内存紧张的情况下,禁用它可以减少内存占用。
调整卸载比例
虽然禁用pin_memory解决了初始训练的问题,但从检查点恢复训练时仍然会遇到OOM。进一步的解决方案是调整优化器卸载比例:
"offload_optimizer": {
"device": "cpu" if adam_offload else "none",
"pin_memory": False,
"ratio": 0.9
}
通过将卸载比例设置为0.9,系统只会将90%的优化器状态卸载到CPU,保留10%在GPU上。这种部分卸载策略在内存使用和性能之间取得了平衡。
技术原理分析
DeepSpeed的Zero优化
这些配置调整都基于DeepSpeed的Zero优化技术。Zero优化通过将模型状态(参数、梯度和优化器状态)分割到不同设备上来减少内存占用。
卸载策略的影响
- pin_memory:启用时,系统会锁定内存页,防止被交换到磁盘,提高传输效率但增加内存压力。
- 卸载比例:控制多少优化器状态保留在GPU上。比例越高,GPU内存占用越少,但可能增加CPU-GPU通信开销。
实践建议
对于训练超大规模模型:
- 从较小的卸载比例开始(如0.5),逐步增加直到找到稳定点
- 监控系统内存使用情况,特别是交换空间的使用
- 考虑使用内存分析工具定位内存热点
- 在检查点恢复时预留更多内存余量
总结
在OpenRLHF项目中训练Qwen2.5-72B这类大模型时,精细的内存配置至关重要。通过调整DeepSpeed的卸载参数,特别是pin_memory和卸载比例,可以有效解决训练过程中的内存问题。这些经验也适用于其他大规模深度学习训练场景。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443