PowerPaint 开源项目使用教程
1. 项目介绍
PowerPaint 是一个高质量、多功能的图像修补模型,支持文本引导的物体插入、物体移除、图像扩展以及形状可控的物体生成。该项目由 Tsinghua University 和 Shanghai AI Laboratory 联合开发,旨在通过学习任务提示来实现高质量的多功能图像修补。PowerPaint 在多个图像修补任务中表现出色,包括文本引导的物体插入、上下文感知的图像修补、形状引导的物体插入和图像扩展。
2. 项目快速启动
2.1 克隆仓库
首先,克隆 PowerPaint 的 GitHub 仓库到本地:
git clone https://github.com/open-mmlab/PowerPaint.git
2.2 创建虚拟环境
使用 Conda 创建并激活一个名为 ppt 的虚拟环境:
conda create --name ppt python=3.9
conda activate ppt
2.3 安装依赖
安装项目所需的依赖包:
pip install -r requirements/requirements.txt
或者,你可以通过以下命令从头开始构建 Conda 环境:
conda env create -f requirements/ppt.yaml
conda activate ppt
2.4 启动 Gradio 界面
运行以下命令启动 Gradio 界面:
python app.py --share
3. 应用案例和最佳实践
3.1 文本引导的物体插入
在 Gradio 界面中,上传图像并绘制掩码,选择“文本引导的物体插入”选项卡,输入文本提示。模型将根据提示生成输出图像。
3.2 物体移除
选择“物体移除”选项卡,无需输入任何提示。PowerPaint 将根据背景上下文填充掩码区域。你可以在文本框中输入提示以进一步抑制物体生成,推荐使用较高的 Guidance Scale 值(如 10 或更高)。
3.3 图像扩展
选择“图像扩展”选项卡,无需输入任何文本提示。通过调整水平和垂直扩展比例滑块,PowerPaint 将扩展图像。
3.4 形状引导的物体插入
选择“形状引导的物体插入”选项卡,输入文本提示。通过调整“拟合度”滑块,控制生成物体与掩码形状的拟合程度。
4. 典型生态项目
4.1 ControlNet
PowerPaint 兼容 ControlNet,用户可以通过控制图像生成物体。例如,使用 Canny、Depth、HED 或 Human Pose 等控制图像生成特定形状的物体。
4.2 BrushNet
PowerPaint 借鉴了 BrushNet 的思想,保留了用于任务提示输入的交叉注意力层,进一步提升了模型的多功能性和性能。
通过以上步骤,你可以快速上手并使用 PowerPaint 进行各种图像修补任务。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00