PowerPaint 开源项目使用教程
1. 项目介绍
PowerPaint 是一个高质量、多功能的图像修补模型,支持文本引导的物体插入、物体移除、图像扩展以及形状可控的物体生成。该项目由 Tsinghua University 和 Shanghai AI Laboratory 联合开发,旨在通过学习任务提示来实现高质量的多功能图像修补。PowerPaint 在多个图像修补任务中表现出色,包括文本引导的物体插入、上下文感知的图像修补、形状引导的物体插入和图像扩展。
2. 项目快速启动
2.1 克隆仓库
首先,克隆 PowerPaint 的 GitHub 仓库到本地:
git clone https://github.com/open-mmlab/PowerPaint.git
2.2 创建虚拟环境
使用 Conda 创建并激活一个名为 ppt 的虚拟环境:
conda create --name ppt python=3.9
conda activate ppt
2.3 安装依赖
安装项目所需的依赖包:
pip install -r requirements/requirements.txt
或者,你可以通过以下命令从头开始构建 Conda 环境:
conda env create -f requirements/ppt.yaml
conda activate ppt
2.4 启动 Gradio 界面
运行以下命令启动 Gradio 界面:
python app.py --share
3. 应用案例和最佳实践
3.1 文本引导的物体插入
在 Gradio 界面中,上传图像并绘制掩码,选择“文本引导的物体插入”选项卡,输入文本提示。模型将根据提示生成输出图像。
3.2 物体移除
选择“物体移除”选项卡,无需输入任何提示。PowerPaint 将根据背景上下文填充掩码区域。你可以在文本框中输入提示以进一步抑制物体生成,推荐使用较高的 Guidance Scale 值(如 10 或更高)。
3.3 图像扩展
选择“图像扩展”选项卡,无需输入任何文本提示。通过调整水平和垂直扩展比例滑块,PowerPaint 将扩展图像。
3.4 形状引导的物体插入
选择“形状引导的物体插入”选项卡,输入文本提示。通过调整“拟合度”滑块,控制生成物体与掩码形状的拟合程度。
4. 典型生态项目
4.1 ControlNet
PowerPaint 兼容 ControlNet,用户可以通过控制图像生成物体。例如,使用 Canny、Depth、HED 或 Human Pose 等控制图像生成特定形状的物体。
4.2 BrushNet
PowerPaint 借鉴了 BrushNet 的思想,保留了用于任务提示输入的交叉注意力层,进一步提升了模型的多功能性和性能。
通过以上步骤,你可以快速上手并使用 PowerPaint 进行各种图像修补任务。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00