在Django项目中使用Chancy任务队列的完整指南
2025-06-05 15:55:20作者:董斯意
Chancy是一个功能强大的任务队列系统,可以与Django框架无缝集成。本文将详细介绍如何在Django项目中使用Chancy,包括基本配置、与Django ORM的集成以及管理后台的使用技巧。
安装与基础配置
首先需要安装Chancy及其Django相关组件:
pip install chancy[cli,django]
安装完成后,我们需要创建一个worker配置文件。这个文件通常放在Django项目的settings.py同级目录下,命名为worker.py:
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "my_application.settings")
import django
django.setup()
from django.conf import settings
from chancy import Chancy
chancy_app = Chancy(settings.DATABASES["default"])
这个配置做了以下几件事:
- 设置Django环境变量
- 初始化Django
- 使用Django默认数据库配置创建Chancy应用实例
运行Worker进程
配置完成后,可以通过以下命令初始化数据库并启动worker:
chancy --app my_application.worker.chancy_app misc migrate
chancy --app my_application.worker.chancy_app worker start
这两条命令分别执行:
- 数据库迁移(创建Chancy需要的表结构)
- 启动worker进程处理任务
Django ORM与Admin集成
从0.22.0版本开始,Chancy提供了与Django ORM和Admin后台的深度集成功能。要启用这些功能,需要在settings.py中添加:
INSTALLED_APPS = [
...
"chancy.contrib.django",
]
如果还需要使用定时任务(Cron)和工作流(Workflow)功能,可以添加对应的插件:
INSTALLED_APPS = [
...
"chancy.contrib.django",
"chancy.plugins.cron.django",
"chancy.plugins.workflow.django",
]
集成后,你可以在Django Admin中:
- 查看和管理所有任务
- 配置队列和工作线程
- 创建和管理定时任务
- 监控工作流状态
在代码中使用Chancy
集成后,你可以直接在Django代码中使用Chancy的功能:
from chancy.contrib.django.models import Job
# 推送一个新任务
j = await chancy.push(test_job)
# 通过ORM查询任务状态
orm_job = await Job.objects.aget(id=j.identifier)
认证集成
Chancy还支持使用Django的超级用户进行认证,这对于管理后台特别有用。配置方法如下:
from chancy.contrib.django.auth import DjangoAuthBackend
app = Chancy(
dsn=settings.DATABASES["default"],
plugins=[
Api(
authentication_backend=DjangoAuthBackend(),
secret_key=settings.SECRET_KEY,
),
],
)
这样配置后,Django的超级用户就可以直接登录Chancy的管理界面了。
注意事项
- 当前版本要求Chancy的表必须与Django默认数据库在同一个数据库中
- 定时任务和工作流插件是可选的,根据项目需求选择安装
- 异步任务处理需要确保Django环境正确初始化
通过以上配置,你可以轻松地在Django项目中集成Chancy任务队列系统,享受高效的任务处理能力,同时还能利用熟悉的Django ORM和Admin界面进行管理。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.61 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
116
149
暂无简介
Dart
578
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
182
仓颉编译器源码及 cjdb 调试工具。
C++
121
302
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
610
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.15 K