开源项目最佳实践:Reactive Diffusion Policy
2025-05-22 16:36:59作者:仰钰奇
1. 项目介绍
Reactive Diffusion Policy(简称RDP)是一个用于慢速-快速视觉-触觉策略学习的研究项目,旨在提高机器人在接触丰富环境下的操作能力。该项目由上海交通大学、清华大学、上海琦智研究院、上海人工智能实验室等机构的研究人员共同开发,并在RSS 2025会议上发表。RDP通过结合视觉和触觉信息,训练机器人执行复杂的操作任务。
2. 项目快速启动
环境准备
- 操作系统:Ubuntu 22.04
- GPU:NVIDIA RTX 3090 或类似性能的GPU
- VR设备:Meta Quest 3 VR 头盔
- 相机:RealSense D435(手腕相机)、RealSense D415(外部相机)
- 触觉传感器:GelSight Mini(可选)
安装依赖
首先,创建一个虚拟环境并激活:
python3 -m venv rdp_venv
source rdp_venv/bin/activate
然后,安装必要的Python库:
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirements.txt
如果需要记录实验视频,还需要安装MindVision SDK。
配置环境
编辑reactive_diffusion_policy/config/task/real_robot_env.yaml文件,配置环境参数,包括主机IP、机器人IP、VR服务器IP和校准路径。
运行服务
在单独的终端中运行以下命令:
# 启动遥操作服务器
python teleop.py task=[task_config_file_name]
# 启动相机节点启动器
python camera_node_launcher.py task=[task_config_file_name]
# 启动数据记录器
python record_data.py --save_to_disk --save_file_dir [task_data_dir] --save_file_name [record_seq_file_name]
运行VR应用
根据Unity仓库中的用户指南运行TactAR应用。
3. 应用案例和最佳实践
- 数据采集:确保正确配置环境和任务,遵循数据采集的最佳实践,包括校准、配置文件编辑和数据处理。
- 模型训练:在训练模型前,确保生成的数据集符合所需的控制频率,并使用正确的配置文件进行训练。
4. 典型生态项目
- TactAR:用于遥操作的VR应用,提供视觉和触觉反馈。
- Flexiv Rizon 4:一款支持关节扭矩传感的机器人臂,适用于复杂操作任务。
- MindVision SDK:用于记录实验视频的SDK,提高数据采集的效率。
通过遵循以上最佳实践,开发者可以更好地利用Reactive Diffusion Policy项目,提升机器人的操作能力和智能化水平。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0135
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
502
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
317
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347