CodeCarbon 项目教程
2024-09-18 04:42:55作者:昌雅子Ethen
1. 项目目录结构及介绍
CodeCarbon 项目的目录结构如下:
codecarbon/
├── carbonserver/
├── codecarbon/
├── dashboard/
├── docker/
├── docs/
├── examples/
├── requirements/
├── tests/
├── webapp/
├── .editorconfig
├── .flake8
├── .gitattributes
├── .gitignore
├── .isort.cfg
├── .pre-commit-config.yaml
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── docker-compose.yml
├── pyproject.toml
├── pytest.ini
└── requirements.txt
目录介绍
- carbonserver/: 包含与碳排放服务器相关的代码。
- codecarbon/: 核心代码库,包含用于跟踪和计算碳排放的Python代码。
- dashboard/: 包含用于可视化碳排放数据的仪表板代码。
- docker/: 包含Docker相关的配置文件和脚本。
- docs/: 包含项目的文档文件。
- examples/: 包含使用CodeCarbon的示例代码。
- requirements/: 包含项目的依赖文件。
- tests/: 包含项目的测试代码。
- webapp/: 包含Web应用程序的代码。
- .editorconfig: 编辑器配置文件。
- .flake8: Flake8配置文件,用于代码风格检查。
- .gitattributes: Git属性配置文件。
- .gitignore: Git忽略文件配置。
- .isort.cfg: isort配置文件,用于自动排序导入。
- .pre-commit-config.yaml: pre-commit配置文件,用于代码提交前的检查。
- CONTRIBUTING.md: 贡献指南。
- LICENSE: 项目许可证。
- README.md: 项目介绍和使用说明。
- docker-compose.yml: Docker Compose配置文件。
- pyproject.toml: Python项目配置文件。
- pytest.ini: pytest配置文件。
- requirements.txt: 项目依赖列表。
2. 项目启动文件介绍
CodeCarbon 项目的启动文件主要位于 codecarbon/
目录下。以下是一些关键的启动文件:
- codecarbon/init.py: 初始化文件,定义了项目的包结构。
- codecarbon/main.py: 主启动文件,包含了项目的核心逻辑和入口函数。
- codecarbon/cli.py: 命令行接口文件,定义了项目的命令行操作。
启动步骤
- 安装依赖: 使用
pip install -r requirements.txt
安装项目依赖。 - 启动项目: 运行
python codecarbon/main.py
启动项目。
3. 项目配置文件介绍
CodeCarbon 项目的配置文件主要包括以下几个:
- pyproject.toml: 项目配置文件,包含了项目的元数据和构建配置。
- pytest.ini: pytest配置文件,用于配置测试环境。
- docker-compose.yml: Docker Compose配置文件,用于定义和运行多容器Docker应用程序。
- .pre-commit-config.yaml: pre-commit配置文件,用于配置代码提交前的检查。
- .isort.cfg: isort配置文件,用于配置导入排序规则。
- .flake8: Flake8配置文件,用于配置代码风格检查规则。
配置文件示例
pyproject.toml
[tool.poetry]
name = "codecarbon"
version = "2.3.4"
description = "Track emissions from Compute and recommend ways to reduce their impact on the environment"
authors = ["CodeCarbon Team <team@codecarbon.io>"]
[tool.poetry.dependencies]
python = "^3.7"
numpy = "^1.19.5"
pandas = "^1.2.4"
[tool.poetry.dev-dependencies]
pytest = "^6.2.4"
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
pytest.ini
[pytest]
addopts = --cov=codecarbon --cov-report=term-missing
testpaths = tests
docker-compose.yml
version: '3.8'
services:
web:
build: .
ports:
- "5000:5000"
volumes:
- .:/codecarbon
environment:
FLASK_ENV: development
通过这些配置文件,可以灵活地调整和配置CodeCarbon项目的行为和环境。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.92 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8