Spring Batch文档中关于StepExecutionListenerSupport的更新说明
在Spring Batch框架的最新版本中,开发团队对部分API进行了优化和重构。其中,StepExecutionListenerSupport类已被标记为过时(deprecated),这意味着在未来的版本中可能会被移除。本文将详细介绍这一变更的背景、影响以及如何迁移现有代码。
背景介绍
StepExecutionListenerSupport是Spring Batch中一个提供默认实现的监听器基类,主要用于简化StepExecutionListener接口的实现。在早期的Spring Batch版本中,开发者可以继承这个类来快速创建步骤执行监听器。
然而,随着框架的发展,Spring团队推荐开发者直接实现StepExecutionListener接口而非继承StepExecutionListenerSupport类。这种变化符合面向接口编程的最佳实践,能够提供更大的灵活性和更清晰的代码结构。
变更影响
在Spring Batch的参考文档中,示例代码仍然使用了这个已过时的类。具体表现为在"控制流程"章节的"批处理状态与退出状态"部分,示例代码展示了如何通过继承StepExecutionListenerSupport来创建自定义监听器。
迁移建议
对于现有代码,建议进行如下修改:
- 不再继承StepExecutionListenerSupport类
- 直接实现StepExecutionListener接口
- 根据需要实现afterStep和beforeStep方法
修改后的代码示例如下:
public class SkipCheckingListener implements StepExecutionListener {
@Override
public ExitStatus afterStep(StepExecution stepExecution) {
String exitCode = stepExecution.getExitStatus().getExitCode();
if (!exitCode.equals(ExitStatus.FAILED.getExitCode()) &&
stepExecution.getSkipCount() > 0) {
return new ExitStatus("COMPLETED WITH SKIPS");
}
return null;
}
@Override
public void beforeStep(StepExecution stepExecution) {
// 可选的预处理逻辑
}
}
最佳实践
- 优先使用接口而非抽象类
- 保持监听器逻辑简洁
- 考虑使用注解方式(@BeforeStep, @AfterStep)替代实现接口
- 对于简单场景,可以使用lambda表达式实现监听器
总结
Spring Batch框架的这一变更反映了现代Java开发的最佳实践,鼓励开发者使用更灵活的接口实现方式。虽然StepExecutionListenerSupport类目前仍然可用,但建议新项目直接实现StepExecutionListener接口,现有项目也应考虑逐步迁移。
框架文档已经相应更新,开发者可以参考最新文档了解这一变化的具体细节和更多示例。这种演进体现了Spring Batch框架对代码质量和开发者体验的持续改进。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00