Sound_event_detection 项目使用教程
2024-09-17 19:13:00作者:虞亚竹Luna
1. 项目目录结构及介绍
Sound_event_detection/
├── data/
│ ├── raw/
│ └── processed/
├── models/
│ ├── base_model.py
│ └── custom_model.py
├── configs/
│ ├── config.yaml
│ └── parameters.json
├── scripts/
│ ├── preprocess.py
│ ├── train.py
│ └── evaluate.py
├── README.md
├── requirements.txt
└── main.py
目录结构介绍
- data/: 存放数据文件的目录,包含原始数据 (
raw/
) 和处理后的数据 (processed/
)。 - models/: 存放模型定义的文件,包括基础模型 (
base_model.py
) 和自定义模型 (custom_model.py
)。 - configs/: 存放配置文件,包括主配置文件 (
config.yaml
) 和参数配置文件 (parameters.json
)。 - scripts/: 存放脚本文件,包括数据预处理 (
preprocess.py
)、模型训练 (train.py
) 和模型评估 (evaluate.py
)。 - README.md: 项目说明文件。
- requirements.txt: 项目依赖库列表。
- main.py: 项目启动文件。
2. 项目启动文件介绍
main.py
main.py
是项目的启动文件,负责初始化项目并调用其他模块执行具体任务。以下是 main.py
的主要功能:
- 加载配置文件: 从
configs/config.yaml
和configs/parameters.json
中读取配置参数。 - 数据预处理: 调用
scripts/preprocess.py
对数据进行预处理。 - 模型训练: 调用
scripts/train.py
进行模型训练。 - 模型评估: 调用
scripts/evaluate.py
对训练好的模型进行评估。
使用方法
python main.py
3. 项目的配置文件介绍
configs/config.yaml
config.yaml
是项目的主配置文件,包含项目运行所需的各种配置参数。以下是一些常见的配置项:
data:
raw_dir: "data/raw"
processed_dir: "data/processed"
model:
type: "custom"
epochs: 100
batch_size: 32
training:
optimizer: "adam"
learning_rate: 0.001
configs/parameters.json
parameters.json
是项目的参数配置文件,包含一些额外的参数设置。以下是一些常见的参数项:
{
"feature_extraction": {
"window_size": 2048,
"hop_size": 512
},
"evaluation": {
"threshold": 0.5
}
}
通过这两个配置文件,用户可以方便地调整项目的运行参数,以适应不同的需求和环境。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5