StoryDiffusion 开源项目使用教程
2024-09-14 07:04:22作者:温玫谨Lighthearted
1. 项目介绍
StoryDiffusion 是一个基于深度学习的开源项目,旨在通过一致的自注意力机制生成长期一致的图像和视频。该项目主要包含两个核心部分:
- 一致的自注意力机制:用于在长序列中生成一致的图像,确保角色风格和服饰的一致性。
- 运动预测器:用于生成长期视频,通过在压缩的图像语义空间中预测条件图像之间的运动,实现更大范围的运动预测。
该项目支持多种风格的漫画生成,并且可以生成高质量的视频。
2. 项目快速启动
环境准备
首先,确保你的环境满足以下要求:
- Python >= 3.8
- PyTorch >= 2.0.0
你可以使用 Anaconda 或 Miniconda 来创建虚拟环境:
conda create --name storydiffusion python=3.10
conda activate storydiffusion
pip install -U pip
pip install -r requirements.txt
启动本地 Gradio 演示
推荐使用以下命令启动本地 Gradio 演示:
python gradio_app_sdxl_specific_id_low_vram.py
该版本适用于 GPU 内存大于 20GB 的机器。
使用 Jupyter Notebook
你也可以通过 Jupyter Notebook 来生成漫画:
jupyter notebook Comic_Generation.ipynb
3. 应用案例和最佳实践
漫画生成
StoryDiffusion 可以生成多种风格的漫画,确保角色风格和服饰的一致性。以下是一个简单的漫画生成示例:
from storydiffusionpipeline import StoryDiffusionPipeline
pipeline = StoryDiffusionPipeline()
comic = pipeline.generate_comic(text_prompts=["A superhero flying in the sky", "A villain attacking the city"])
comic.save("my_comic.png")
视频生成
StoryDiffusion 还可以生成高质量的视频。以下是一个简单的视频生成示例:
from predict import MotionPredictor
predictor = MotionPredictor()
video = predictor.generate_video(condition_images=["image1.png", "image2.png"])
video.save("my_video.mp4")
4. 典型生态项目
相关资源
相关论文
如果你在研究中使用了 StoryDiffusion,请引用以下 BibTeX:
@article{zhou2024storydiffusion,
title={StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation},
author={Zhou, Yupeng and Zhou, Daquan and Cheng, Ming-Ming and Feng, Jiashi and Hou, Qibin},
journal={arXiv preprint arXiv:2405.01434},
year={2024}
}
通过以上步骤,你可以快速上手并使用 StoryDiffusion 生成高质量的漫画和视频。
热门内容推荐
1 freeCodeCamp计算机基础课程中主板与CPU概念的精确表述 2 freeCodeCamp课程中排版基础概念的优化探讨3 freeCodeCamp全栈开发课程中业务卡片设计实验的优化建议4 freeCodeCamp猫照片应用HTML教程中的元素嵌套优化建议5 freeCodeCamp注册表单项目中的字体样式优化建议6 freeCodeCamp正则表达式教学视频中的语法修正7 freeCodeCamp博客页面开发中锚点跳转问题的技术解析8 freeCodeCamp电话号码验证器项目中的随机测试问题分析9 freeCodeCamp课程中sr-only类与position: absolute的正确使用10 freeCodeCamp 实验室项目:Event Hub 图片元素顺序优化指南
最新内容推荐
Apache CouchDB中_changes API的正确使用方式:避免数据同步丢失问题 Shadcn-Svelte 5 表单组件使用指南 DouyinLiveRecorder项目代理检测配置问题解析 使用Swift解析Hacker News非结构化数据的技术实践 Easy-Dataset项目中的extractThinkChain未定义问题分析与解决方案 GrowthBook项目中Athena查询结果复用功能的技术解析 DouyinLiveRecorder项目中的B站直播循环监控错误分析与修复 Anki-Card-Templates 的项目扩展与二次开发 WindowsAppSDK中TeachingTip控件的Target属性失效问题分析 Shuttle项目Discord天气机器人教程升级指南
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
50
13

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
267
384

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
409
311

轻量级、语义化、对开发者友好的 golang 时间处理库
Go
7
2

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TSX
287
26

openGauss kernel ~ openGauss is an open source relational database management system
C++
38
102

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
607
69

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
85
234

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
108
73

凹语言(凹读音“Wā”)是针对 WebAssembly 设计的编程语言,目标:为高性能网页应用提供一门简洁、可靠、易用、强类型的编译型通用语言。凹语言的代码生成器及运行时为全自主研发(不依赖于LLVM等外部项目),实现了全链路自主可控。目前凹语言处于工程试用阶段。
Go
13
4