StoryDiffusion 开源项目使用教程
2024-09-14 21:45:33作者:温玫谨Lighthearted
1. 项目介绍
StoryDiffusion 是一个基于深度学习的开源项目,旨在通过一致的自注意力机制生成长期一致的图像和视频。该项目主要包含两个核心部分:
- 一致的自注意力机制:用于在长序列中生成一致的图像,确保角色风格和服饰的一致性。
- 运动预测器:用于生成长期视频,通过在压缩的图像语义空间中预测条件图像之间的运动,实现更大范围的运动预测。
该项目支持多种风格的漫画生成,并且可以生成高质量的视频。
2. 项目快速启动
环境准备
首先,确保你的环境满足以下要求:
- Python >= 3.8
- PyTorch >= 2.0.0
你可以使用 Anaconda 或 Miniconda 来创建虚拟环境:
conda create --name storydiffusion python=3.10
conda activate storydiffusion
pip install -U pip
pip install -r requirements.txt
启动本地 Gradio 演示
推荐使用以下命令启动本地 Gradio 演示:
python gradio_app_sdxl_specific_id_low_vram.py
该版本适用于 GPU 内存大于 20GB 的机器。
使用 Jupyter Notebook
你也可以通过 Jupyter Notebook 来生成漫画:
jupyter notebook Comic_Generation.ipynb
3. 应用案例和最佳实践
漫画生成
StoryDiffusion 可以生成多种风格的漫画,确保角色风格和服饰的一致性。以下是一个简单的漫画生成示例:
from storydiffusionpipeline import StoryDiffusionPipeline
pipeline = StoryDiffusionPipeline()
comic = pipeline.generate_comic(text_prompts=["A superhero flying in the sky", "A villain attacking the city"])
comic.save("my_comic.png")
视频生成
StoryDiffusion 还可以生成高质量的视频。以下是一个简单的视频生成示例:
from predict import MotionPredictor
predictor = MotionPredictor()
video = predictor.generate_video(condition_images=["image1.png", "image2.png"])
video.save("my_video.mp4")
4. 典型生态项目
相关资源
相关论文
如果你在研究中使用了 StoryDiffusion,请引用以下 BibTeX:
@article{zhou2024storydiffusion,
title={StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation},
author={Zhou, Yupeng and Zhou, Daquan and Cheng, Ming-Ming and Feng, Jiashi and Hou, Qibin},
journal={arXiv preprint arXiv:2405.01434},
year={2024}
}
通过以上步骤,你可以快速上手并使用 StoryDiffusion 生成高质量的漫画和视频。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178