gcp-storage-emulator 项目使用教程
2024-09-12 08:15:31作者:明树来
1. 项目介绍
gcp-storage-emulator 是一个用于 Google Cloud Storage API 的本地模拟器。它允许开发者在本地环境中运行测试和进行开发,而无需连接到生产环境的存储 API。该项目目前仍处于开发阶段,仅支持 API 的有限子集。
主要功能
- 本地模拟 Google Cloud Storage API
 - 支持在内存中运行,无需持久化数据
 - 提供 CLI 和 Python API 接口
 - 支持 Docker 容器化部署
 
2. 项目快速启动
安装
首先,确保你已经安装了 Python 3.8 或更高版本。然后使用 pip 安装 gcp-storage-emulator:
pip install gcp-storage-emulator
启动模拟器
使用以下命令启动模拟器:
gcp-storage-emulator start
默认情况下,模拟器会在 http://localhost:9023 上运行,并将数据存储在 /cloudstorage 目录下。你可以通过环境变量 STORAGE_BASE 和 STORAGE_DIR 来配置存储目录。
配置 Google 客户端库
如果你使用的是 Google 客户端库(例如 google-cloud-storage),可以通过设置 STORAGE_EMULATOR_HOST 环境变量来连接到模拟器:
export STORAGE_EMULATOR_HOST=http://localhost:9023
示例代码
以下是一个简单的 Python 示例,展示如何在本地模拟器中创建一个存储桶并上传文件:
import os
from google.cloud import storage
from gcp_storage_emulator.server import create_server
HOST = "localhost"
PORT = 9023
BUCKET = "test-bucket"
# 启动模拟器
server = create_server(HOST, PORT, in_memory=True, default_bucket=BUCKET)
server.start()
# 设置环境变量
os.environ["STORAGE_EMULATOR_HOST"] = f"http://{HOST}:{PORT}"
# 初始化客户端
client = storage.Client()
# 创建存储桶
bucket = client.bucket(BUCKET)
# 上传文件
blob = bucket.blob("blob1")
blob.upload_from_string("test1")
# 列出所有文件
for blob in bucket.list_blobs():
    content = blob.download_as_bytes()
    print(f"Blob [{blob.name}]: {content}")
# 停止模拟器
server.stop()
3. 应用案例和最佳实践
应用案例
- 本地开发和测试:在本地环境中模拟 Google Cloud Storage,避免频繁连接到生产环境,提高开发效率。
 - CI/CD 集成:在持续集成和持续部署流程中使用模拟器,确保测试环境的一致性。
 
最佳实践
- 使用内存模式:在测试环境中使用 
--in-memory参数,避免数据持久化,确保测试环境的干净。 - 配置环境变量:通过设置 
STORAGE_EMULATOR_HOST环境变量,确保应用程序连接到本地模拟器而不是生产环境。 - Docker 部署:使用 Docker 容器化部署模拟器,方便在不同环境中快速启动和配置。
 
4. 典型生态项目
- Google Cloud SDK:Google Cloud 官方提供的命令行工具,用于管理 Google Cloud 资源。
 - google-cloud-storage:Google Cloud 官方提供的 Python 客户端库,用于与 Google Cloud Storage 交互。
 - Docker:用于容器化部署 
gcp-storage-emulator,方便在不同环境中运行。 
通过以上步骤,你可以快速上手并使用 gcp-storage-emulator 进行本地开发和测试。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445