gcp-storage-emulator 项目使用教程
2024-09-12 08:40:06作者:明树来
1. 项目介绍
gcp-storage-emulator 是一个用于 Google Cloud Storage API 的本地模拟器。它允许开发者在本地环境中运行测试和进行开发,而无需连接到生产环境的存储 API。该项目目前仍处于开发阶段,仅支持 API 的有限子集。
主要功能
- 本地模拟 Google Cloud Storage API
- 支持在内存中运行,无需持久化数据
- 提供 CLI 和 Python API 接口
- 支持 Docker 容器化部署
2. 项目快速启动
安装
首先,确保你已经安装了 Python 3.8 或更高版本。然后使用 pip 安装 gcp-storage-emulator:
pip install gcp-storage-emulator
启动模拟器
使用以下命令启动模拟器:
gcp-storage-emulator start
默认情况下,模拟器会在 http://localhost:9023 上运行,并将数据存储在 /cloudstorage 目录下。你可以通过环境变量 STORAGE_BASE 和 STORAGE_DIR 来配置存储目录。
配置 Google 客户端库
如果你使用的是 Google 客户端库(例如 google-cloud-storage),可以通过设置 STORAGE_EMULATOR_HOST 环境变量来连接到模拟器:
export STORAGE_EMULATOR_HOST=http://localhost:9023
示例代码
以下是一个简单的 Python 示例,展示如何在本地模拟器中创建一个存储桶并上传文件:
import os
from google.cloud import storage
from gcp_storage_emulator.server import create_server
HOST = "localhost"
PORT = 9023
BUCKET = "test-bucket"
# 启动模拟器
server = create_server(HOST, PORT, in_memory=True, default_bucket=BUCKET)
server.start()
# 设置环境变量
os.environ["STORAGE_EMULATOR_HOST"] = f"http://{HOST}:{PORT}"
# 初始化客户端
client = storage.Client()
# 创建存储桶
bucket = client.bucket(BUCKET)
# 上传文件
blob = bucket.blob("blob1")
blob.upload_from_string("test1")
# 列出所有文件
for blob in bucket.list_blobs():
content = blob.download_as_bytes()
print(f"Blob [{blob.name}]: {content}")
# 停止模拟器
server.stop()
3. 应用案例和最佳实践
应用案例
- 本地开发和测试:在本地环境中模拟 Google Cloud Storage,避免频繁连接到生产环境,提高开发效率。
- CI/CD 集成:在持续集成和持续部署流程中使用模拟器,确保测试环境的一致性。
最佳实践
- 使用内存模式:在测试环境中使用
--in-memory参数,避免数据持久化,确保测试环境的干净。 - 配置环境变量:通过设置
STORAGE_EMULATOR_HOST环境变量,确保应用程序连接到本地模拟器而不是生产环境。 - Docker 部署:使用 Docker 容器化部署模拟器,方便在不同环境中快速启动和配置。
4. 典型生态项目
- Google Cloud SDK:Google Cloud 官方提供的命令行工具,用于管理 Google Cloud 资源。
- google-cloud-storage:Google Cloud 官方提供的 Python 客户端库,用于与 Google Cloud Storage 交互。
- Docker:用于容器化部署
gcp-storage-emulator,方便在不同环境中运行。
通过以上步骤,你可以快速上手并使用 gcp-storage-emulator 进行本地开发和测试。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355