MMDetection中Grounding DINO模型运行报错分析与解决方案
2025-05-04 19:14:34作者:齐添朝
问题背景
在使用MMDetection框架中的Grounding DINO模型进行目标检测时,许多开发者遇到了一个常见的运行时错误:"ValueError: too many values to unpack (expected 2)"。这个错误发生在模型推理过程中,特别是在处理注意力掩码(attention mask)时。
错误原因分析
该错误的根本原因在于注意力掩码维度不匹配问题。具体表现为:
- 在transformers库的
_expand_mask
函数中,代码期望接收一个二维的注意力掩码(bsz, scr_len),但实际传入的是一个三维张量 - 这个问题主要源于transformers库版本更新后对注意力掩码处理方式的改变
- Grounding DINO模型中的BERT语言模型部分生成的注意力掩码是三维的(batch_size, seq_len, seq_len),而新版transformers库期望的是二维掩码
解决方案
方法一:修改transformers库源码
在transformers库的bert模型实现文件中(通常位于transformers/models/bert/modeling_bert.py
),找到处理注意力掩码的部分,将原有的掩码处理代码替换为:
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
这个修改直接跳过了新版transformers库中严格的维度检查,使用BERT模型自身的掩码扩展方法。
方法二:降级transformers库版本
更稳妥的解决方案是将transformers库降级到4.38.0版本,这个版本对注意力掩码的处理与Grounding DINO模型兼容性更好。可以使用以下命令降级:
pip install transformers==4.38.0
技术细节解析
Grounding DINO模型结合了视觉和语言两个模态的信息,其中:
- 视觉部分使用类似DINO的架构处理图像特征
- 语言部分使用BERT模型处理文本输入
- 问题出在语言模型处理文本时生成的注意力掩码格式
在较早版本的transformers库中,三维注意力掩码是被接受的,但新版本为了优化性能,强制要求二维掩码输入。这种版本间的兼容性问题导致了运行时的维度不匹配错误。
最佳实践建议
- 对于生产环境,建议采用降级transformers库的方案,这能确保整个模型管线的稳定性
- 如果需要在较新版本的transformers库上运行,可以考虑修改源码,但要充分测试模型输出是否正确
- 关注MMDetection和transformers库的更新日志,未来版本可能会提供官方的兼容性解决方案
总结
MMDetection框架中的Grounding DINO模型与新版transformers库的兼容性问题,通过上述两种方法都能有效解决。理解这个问题的本质有助于开发者更好地处理类似的多模态模型兼容性问题。建议开发者在选择解决方案时,根据自身项目需求和环境配置做出合理选择。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133