MMDetection中Grounding DINO模型运行报错分析与解决方案
2025-05-04 22:49:28作者:齐添朝
问题背景
在使用MMDetection框架中的Grounding DINO模型进行目标检测时,许多开发者遇到了一个常见的运行时错误:"ValueError: too many values to unpack (expected 2)"。这个错误发生在模型推理过程中,特别是在处理注意力掩码(attention mask)时。
错误原因分析
该错误的根本原因在于注意力掩码维度不匹配问题。具体表现为:
- 在transformers库的
_expand_mask函数中,代码期望接收一个二维的注意力掩码(bsz, scr_len),但实际传入的是一个三维张量 - 这个问题主要源于transformers库版本更新后对注意力掩码处理方式的改变
- Grounding DINO模型中的BERT语言模型部分生成的注意力掩码是三维的(batch_size, seq_len, seq_len),而新版transformers库期望的是二维掩码
解决方案
方法一:修改transformers库源码
在transformers库的bert模型实现文件中(通常位于transformers/models/bert/modeling_bert.py),找到处理注意力掩码的部分,将原有的掩码处理代码替换为:
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
这个修改直接跳过了新版transformers库中严格的维度检查,使用BERT模型自身的掩码扩展方法。
方法二:降级transformers库版本
更稳妥的解决方案是将transformers库降级到4.38.0版本,这个版本对注意力掩码的处理与Grounding DINO模型兼容性更好。可以使用以下命令降级:
pip install transformers==4.38.0
技术细节解析
Grounding DINO模型结合了视觉和语言两个模态的信息,其中:
- 视觉部分使用类似DINO的架构处理图像特征
- 语言部分使用BERT模型处理文本输入
- 问题出在语言模型处理文本时生成的注意力掩码格式
在较早版本的transformers库中,三维注意力掩码是被接受的,但新版本为了优化性能,强制要求二维掩码输入。这种版本间的兼容性问题导致了运行时的维度不匹配错误。
最佳实践建议
- 对于生产环境,建议采用降级transformers库的方案,这能确保整个模型管线的稳定性
- 如果需要在较新版本的transformers库上运行,可以考虑修改源码,但要充分测试模型输出是否正确
- 关注MMDetection和transformers库的更新日志,未来版本可能会提供官方的兼容性解决方案
总结
MMDetection框架中的Grounding DINO模型与新版transformers库的兼容性问题,通过上述两种方法都能有效解决。理解这个问题的本质有助于开发者更好地处理类似的多模态模型兼容性问题。建议开发者在选择解决方案时,根据自身项目需求和环境配置做出合理选择。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882