GO-SLAM 使用教程
2024-08-17 16:40:12作者:蔡怀权
项目介绍
GO-SLAM 是一个基于深度学习的密集视觉SLAM框架,旨在通过全局优化实现一致的3D即时重建。该项目由Youmin Zhang、Fabio Tosi、Stefano Mattoccia和Matteo Poggi开发,并在2023年的IEEE/CVF国际计算机视觉会议(ICCV)上发表。GO-SLAM 通过高效的闭环检测和在线全束调整支持鲁棒的姿态估计,从而在实时环境中优化姿态和3D重建。
项目快速启动
环境设置
首先,克隆项目仓库并安装必要的依赖:
git clone --recursive https://github.com/youmi-zym/GO-SLAM.git
cd GO-SLAM
sudo apt-get install libopenexr-dev
conda env create -f environment.yaml
conda activate go-slam
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
pip install evo --upgrade --no-binary evo
python setup.py install
数据准备
从Google Drive下载数据并解压到指定目录。
运行示例
修改脚本中的OUT_DIR和配置文件中的DATA_ROOT,然后运行:
python run_example.py
应用案例和最佳实践
案例一:室内场景重建
使用GO-SLAM进行室内场景的3D重建,可以获得高精度的模型和相机轨迹。通过闭环检测和全局优化,有效减少了累积误差。
案例二:机器人导航
在机器人导航应用中,GO-SLAM可以提供实时的环境地图和精确的定位信息,支持机器人在复杂环境中的自主导航。
最佳实践
- 数据预处理:确保输入数据的质量,进行必要的预处理,如去噪、对齐等。
- 参数调优:根据具体应用场景调整SLAM系统的参数,以达到最佳性能。
- 闭环检测:合理设置闭环检测的参数,提高系统的鲁棒性和准确性。
典型生态项目
ORB-SLAM3
ORB-SLAM3 是一个基于特征点的SLAM系统,支持单目、双目和RGB-D相机。与GO-SLAM相比,ORB-SLAM3在特征点匹配和跟踪方面表现出色,适用于多种视觉SLAM应用。
DROID-SLAM
DROID-SLAM 是一个基于深度学习的SLAM系统,使用深度神经网络进行特征提取和匹配。与GO-SLAM类似,DROID-SLAM也支持全局优化,但在网络架构和训练策略上有所不同。
通过结合这些生态项目,可以进一步扩展和优化GO-SLAM的功能,满足更多复杂场景的需求。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136