BoundaryML/baml项目中的结构化与非结构化数据解析问题解析
2025-06-25 17:00:21作者:郜逊炳
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
在BoundaryML/baml项目中处理金融文档时,开发人员经常需要同时提取结构化和非结构化数据。本文将通过一个实际的财务资产负债表解析案例,深入分析这一过程中的常见问题及解决方案。
问题背景
在金融文档处理场景中,我们需要:
- 结构化数据:严格遵循预定义Schema的规范化数据
- 非结构化数据:保留原始文档中所有字段的完整信息
BoundaryML/baml项目通过BAML语言定义数据模型,但在实际解析过程中遇到了结构化数据丢失的问题。
关键问题分析
1. 字段命名一致性
原始代码中存在字段命名不一致问题:
class Liabilities {
noncurrent_liablities NonCurrentLiabilities // 拼写错误
}
而LLM输出的是正确拼写:
"noncurrent_liabilities": {
"total_noncurrent_liabilities": 420000
}
解决方案:统一使用正确的拼写"noncurrent_liabilities"。
2. 非结构化数据处理
对于非结构化数据,最佳实践是:
- 使用通用JSON类型接收任意结构数据
- 保持字段名称的驼峰式命名一致性
改进后的定义:
type JSON = string | int| float| bool | JSON[] | map<string, JSON> | null
class AssetsUnstructured {
au JSON @description("所有资产信息的原始JSON")
}
3. 数据模型设计建议
针对金融文档解析,推荐采用以下设计模式:
- 核心结构化模型:定义必须的财务字段
- 扩展非结构化模型:使用JSON类型捕获额外信息
- 验证层:添加数据校验规则
调试技巧
在BoundaryML/baml项目中调试解析问题时:
- 独立测试解析器:
result = b.parser.ExtractBalanceSheet("测试字符串")
- 逐步验证:
- 先验证顶层结构
- 再逐层检查嵌套字段
- 错误处理:
- 关注"Missing required field"错误
- 检查字段拼写和大小写
最佳实践
- 命名规范:
- 统一使用驼峰式命名
- 避免拼写错误
- 类型设计:
- 结构化字段使用具体类型
- 非结构化字段使用JSON类型
- LLM提示词优化:
- 明确区分结构化/非结构化输出要求
- 提供示例格式
总结
BoundaryML/baml项目在处理复杂金融文档时,通过合理的数据模型设计和严格的命名规范,可以有效地同时获取结构化和非结构化数据。关键在于:
- 保持数据模型与LLM输出的一致性
- 使用灵活的类型处理非结构化数据
- 建立完善的调试和验证机制
这些经验不仅适用于金融领域,也可应用于其他需要混合处理结构化和非结构化数据的场景。
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134