BoundaryML/baml项目中的结构化与非结构化数据解析问题解析
2025-06-25 18:41:18作者:郜逊炳
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
在BoundaryML/baml项目中处理金融文档时,开发人员经常需要同时提取结构化和非结构化数据。本文将通过一个实际的财务资产负债表解析案例,深入分析这一过程中的常见问题及解决方案。
问题背景
在金融文档处理场景中,我们需要:
- 结构化数据:严格遵循预定义Schema的规范化数据
- 非结构化数据:保留原始文档中所有字段的完整信息
BoundaryML/baml项目通过BAML语言定义数据模型,但在实际解析过程中遇到了结构化数据丢失的问题。
关键问题分析
1. 字段命名一致性
原始代码中存在字段命名不一致问题:
class Liabilities {
noncurrent_liablities NonCurrentLiabilities // 拼写错误
}
而LLM输出的是正确拼写:
"noncurrent_liabilities": {
"total_noncurrent_liabilities": 420000
}
解决方案:统一使用正确的拼写"noncurrent_liabilities"。
2. 非结构化数据处理
对于非结构化数据,最佳实践是:
- 使用通用JSON类型接收任意结构数据
- 保持字段名称的驼峰式命名一致性
改进后的定义:
type JSON = string | int| float| bool | JSON[] | map<string, JSON> | null
class AssetsUnstructured {
au JSON @description("所有资产信息的原始JSON")
}
3. 数据模型设计建议
针对金融文档解析,推荐采用以下设计模式:
- 核心结构化模型:定义必须的财务字段
- 扩展非结构化模型:使用JSON类型捕获额外信息
- 验证层:添加数据校验规则
调试技巧
在BoundaryML/baml项目中调试解析问题时:
- 独立测试解析器:
result = b.parser.ExtractBalanceSheet("测试字符串")
- 逐步验证:
- 先验证顶层结构
- 再逐层检查嵌套字段
- 错误处理:
- 关注"Missing required field"错误
- 检查字段拼写和大小写
最佳实践
- 命名规范:
- 统一使用驼峰式命名
- 避免拼写错误
- 类型设计:
- 结构化字段使用具体类型
- 非结构化字段使用JSON类型
- LLM提示词优化:
- 明确区分结构化/非结构化输出要求
- 提供示例格式
总结
BoundaryML/baml项目在处理复杂金融文档时,通过合理的数据模型设计和严格的命名规范,可以有效地同时获取结构化和非结构化数据。关键在于:
- 保持数据模型与LLM输出的一致性
- 使用灵活的类型处理非结构化数据
- 建立完善的调试和验证机制
这些经验不仅适用于金融领域,也可应用于其他需要混合处理结构化和非结构化数据的场景。
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28