FlagEmbedding项目中BGE-M3模型的梯度检查点技术解析
2025-05-25 14:59:24作者:伍霜盼Ellen
梯度检查点(Gradient Checkpointing)是一种在深度学习训练过程中优化内存使用的关键技术。本文将深入分析FlagEmbedding项目中BGE-M3模型如何应用这一技术来实现高效的大规模文本嵌入。
梯度检查点技术原理
梯度检查点技术最早由Chen等人在2016年提出,其核心思想是通过牺牲部分计算性能来换取显存使用的显著降低。在标准的反向传播过程中,需要保存所有中间激活值用于梯度计算,这会导致显存占用随着网络深度线性增长。而梯度检查点技术只保存部分关键层的激活值(检查点),在反向传播时重新计算非检查点层的激活值,从而将显存占用从O(n)降低到O(√n)。
BGE-M3中的具体实现
在FlagEmbedding项目的BGE-M3模型中,梯度检查点技术被创新性地应用于批量文本编码过程。模型实现中通过以下方式启用这一功能:
- 在模型定义阶段显式启用了梯度检查点功能,这为后续的分批处理奠定了基础
- 在文本编码过程中,将大批量数据分割为多个子批次(sub-batch)
- 对每个子批次独立应用梯度检查点技术进行编码
- 最后聚合所有子批次生成的嵌入向量
这种实现方式使得BGE-M3能够处理传统方法无法应对的大批量文本数据,同时保持合理的显存使用量。特别值得注意的是,模型并非简单地将整个批量分割处理,而是将梯度检查点技术与分批处理有机结合,实现了计算效率和内存使用的优化平衡。
技术优势与应用价值
BGE-M3采用的这种实现方式具有以下显著优势:
- 内存效率:允许在有限显存的GPU上处理更大规模的文本数据
- 批量灵活性:不受传统大批量处理的内存限制,可以灵活调整子批次大小
- 计算稳定性:通过合理的子批次划分,避免了超大单一批次可能导致的计算问题
这种技术实现对于文本嵌入任务尤为重要,因为:
- 文本嵌入通常需要处理大量数据
- 高质量的嵌入表示往往需要较大的批量大小
- 现代嵌入模型参数量大,本身已占用大量显存
通过深入分析BGE-M3的梯度检查点实现,我们可以更好地理解如何在实际项目中应用这一技术来突破硬件限制,实现更高效的模型训练和推理。这一技术思路也可为其他需要处理大规模数据的深度学习项目提供有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217