Scene Graph Benchmark 项目教程
2024-08-17 21:49:02作者:苗圣禹Peter
1. 项目的目录结构及介绍
Scene Graph Benchmark 项目的目录结构如下:
scene_graph_benchmark/
├── configs/
│ ├── R-50-FPN.yaml
│ └── ...
├── scene_graph_benchmark/
│ ├── modeling/
│ │ ├── detector.py
│ │ └── ...
│ ├── data/
│ │ ├── datasets/
│ │ └── ...
│ ├── engine/
│ │ ├── trainer.py
│ │ └── ...
│ ├── utils/
│ │ ├── misc.py
│ │ └── ...
│ ├── config.py
│ └── ...
├── tools/
│ ├── train_net.py
│ └── ...
├── README.md
└── ...
目录结构介绍
configs/
: 包含项目的配置文件,如模型配置、数据集配置等。scene_graph_benchmark/
: 项目的主要代码目录。modeling/
: 包含模型的定义和实现。data/
: 包含数据处理和加载的相关代码。engine/
: 包含训练和评估的引擎代码。utils/
: 包含各种工具函数和辅助类。config.py
: 配置文件的解析和处理。
tools/
: 包含项目的启动脚本,如训练和评估脚本。README.md
: 项目的说明文档。
2. 项目的启动文件介绍
项目的启动文件主要位于 tools/
目录下,其中最主要的启动文件是 train_net.py
。
train_net.py
train_net.py
是用于训练模型的主要脚本。它接受配置文件作为输入,并根据配置文件中的参数进行模型训练。
# tools/train_net.py
import argparse
import os
from scene_graph_benchmark.config import cfg
from scene_graph_benchmark.engine.trainer import Trainer
def main():
parser = argparse.ArgumentParser(description="Train a model")
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
args = parser.parse_args()
cfg.merge_from_file(args.config_file)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
os.makedirs(output_dir, exist_ok=True)
trainer = Trainer(cfg)
trainer.train()
if __name__ == "__main__":
main()
使用方法
python tools/train_net.py --config-file configs/R-50-FPN.yaml
3. 项目的配置文件介绍
项目的配置文件主要位于 configs/
目录下,其中最主要的配置文件是 R-50-FPN.yaml
。
R-50-FPN.yaml
R-50-FPN.yaml
是一个示例配置文件,定义了模型的各种参数,包括数据集路径、模型结构、训练参数等。
# configs/R-50-FPN.yaml
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
BACKBONE:
CONV_BODY: "R-50-FPN"
RPN:
USE_FPN: True
ROI_HEADS:
USE_FPN: True
ROI_BOX_HEAD:
POOLER_RESOLUTION: 7
POOLER_SCALES: [0.25, 0.125, 0.0625, 0.03125]
POOLER_TYPE: "ROIAlignV2"
FEATURE_EXTRACTOR: "FPN2MLPFeatureExtractor"
PREDICTOR: "FPNPredictor"
ROI_RELATION_HEAD:
USE_GT_BOX: True
USE_GT_OBJECT_LABEL: True
DATA_UPSAMPLE_BATCH: 1
DATA_UPSAMPLE_REL: 1
POOLER_RESOLUTION: 14
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++018Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
155
1.99 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

Ascend Extension for PyTorch
Python
38
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
517
49

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
345
1.32 K